skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1729882

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Icehouse climate systems occur across an abbreviated portion of Earth history, constitutingc.25% of the Phanerozoic record. The Late Paleozoic Ice Age (LPIA) was the most extreme and longest lasting glaciation of the Phanerozoic and is characterized by periods of acute continental-scale glaciation, separated by periods of ice minima or ice-free conditions on the order of <106years. The late Paleozoic glaciogenic record of the Paraná and Kalahari basins of southern Gondwana form one of the largest, best-preserved and well-calibrated records of this glaciation. In the Carboniferous, the eastern and southern margins of the Paraná Basin and the Kalahari Basin were characterized by subglacial conditions, with evidence for continental and upland glaciers. In the latest Carboniferous, these basins transitioned from subglacial reservoirs to ice-free or ‘ice distal‘ conditions evidenced by the widespread deposition of marine deposits juxtaposed on subglacial bedforms. High-precision U–Pb zircon chemical abrasion thermal ionization mass spectrometry geochronological constraints from volcanic ash deposits in the deglacial marine black shales of the Kalahari Basin and from fluvial and coal successions, which overlie marine deposits in the Paraná Basin, indicate subglacial evidence in these regions is constrained to the Carboniferous. The loss of ice in these regions is congruent with a late Carboniferous peak inpCO2and widespread marine anoxia in the late Carboniferous. The permeant retreat of glaciers in basinal settings, despite an early PermianpCO2nadir, highlights the influence of short-term perturbations on the longer-term CO2record and suggests an ice threshold had been crossed in the latest Carboniferous. A definitive driver for greenhouse gases in the LPIA, such as abundant and sustained volcanic activity or an increased biological pump driven by ocean fertilization, is unresolved for this period. Lastly, the proposed Carboniferous apex for the high-latitude LPIA record is incongruent with observations from the low-latitude tropics where an early Permian peak is proposed. 
    more » « less
  2. Abstract We present an updated set of Carboniferous Sr, C and O isotope stratigraphies based on the existing literature, given the importance of chemostratigraphy for stratigraphic correlation in the Carboniferous. The Carboniferous87Sr/86Sr record, constructed using brachiopods and conodonts, exhibits five first-order phases beginning with a rapid decline from a peak value ofc.0.70840 at the Devonian–Carboniferous boundary to a trough (0.70776–0.70771) in the Visean followed by a rise to a plateau (c.0.70827) in the upper Bashkirian. A decline toc.0.70804 follows from the lowermost Gzhelian to the close of the Carboniferous. Contemporaneous carbonate δ13C records exhibit considerable variability between materials analysed and by region, although pronounced excursions (e.g. the mid-Tournaisian positive excursion and the end-Kasimovian negative excursion) are present in most records. Bulk carbonate δ13C records from South China and Europe, however, are generally consistent with those of brachiopod calcite from North America in terms of both absolute values and trends. Both brachiopod calcite and conodont phosphate δ18O document large regional variability, confirming that Carboniferous δ18O records are invalid for precise stratigraphic correlation. Nevertheless, significant positive δ18O shifts in certain intervals (e.g. mid-Tournaisian and the Mississippian–Pennsylvanian transition) can be used for global correlation. 
    more » « less
  3. Abstract Icehouses are the less common climate state on Earth, and thus it is notable that the longest-lived (c.370 to 260 Ma) and possibly most extensive and intense of icehouse periods spanned the Carboniferous Period. Mid- to high-latitude glaciogenic deposits reveal a dynamic glaciation–deglaciation history with ice waxing and waning from multiple ice centres and possible transcontinental ice sheets during the apex of glaciation. New high-precision U–Pb ages confirm a hypothesized west-to-east progression of glaciation through the icehouse, but reveal that its demise occurred as a series of synchronous and widespread deglaciations. The dynamic glaciation history, along with repeated perturbations to Earth System components, are archived in the low-latitude stratigraphic record, revealing similarities to the Cenozoic icehouse. Further assessing the phasing between climate, oceanographic, and biotic changes during the icehouse requires additional chronostratigraphic constraints. Astrochronology permits the deciphering of time, at high resolution, in the late Paleozoic record as has been demonstrated in deep- and quiet-water deposits. Rigorous testing for astronomical forcing in low-latitude cyclothemic successions, which have a direct link to higher-latitude glaciogenic records through inferred glacioeustasy, however, will require a comprehensive approach that integrates new techniques with further optimization and additional independent age constraints given challenges associated with shallow-marine to terrestrial records. 
    more » « less
  4. The geometry of unconformities carved by deep time ice sheets is often obscured and restricted by discontinuous exposure, or outcrop conditions that do not readily permit the examination of glacial unconformities (for example, steeply dipping strata). Here, we present new uncrewed aerial vehicle (UAV) data from selected outcrops across northern, central and southern Namibia to shed further light on the nature of the basal Dwyka Group unconformity. This includes the onlap relationship of basal diamictites onto the Gomatum palaeo-fjord system in northern Namibia, highly complex mapped ice flow orientations elsewhere in the northern Kaokoveld, previously undiscovered grooves along the Fish River area, and a set of subglacial grooves along the border with South Africa along the Orange River. In the latter two cases, photogrammetric methods integrating orthophotos and digital elevation models reveal the presence of subglacial grooves. Furthermore, subglacial grooves often show different orientations to striations and fabrics measured in overlying diamictites, raising fresh questions about the nature of small-scale flow variations beneath Late Palaeozoic ice sheets. 
    more » « less
  5. The late Paleozoic glacial-to-postglacial turnover evolved complexly across Gondwana. Successions bearing volcaniclastic material that can be radiometrically dated provide crucial information about the timing of those climate events. The southernmost part of the Paraná Basin, for instance, has a high-precision geochronological framework. The eastern sector of this basin (Paraná State and north of Santa Catarina State), however, lacks radiometric ages, but conversely, has a more complete stratigraphic record, and paleontological information still poorly explored for the purpose of biostratigraphic correlation. This work examines the glacial-to-postglacial interval in the Paraná State, represented by the upper Itararé Group (Taciba Formation; glacial) and lower–middle Rio Bonito Formation (postglacial). Sedimentological, paleontological and geochemical data from outcrops, cores and well logs were used to decipher the timing, paleoclimatic and paleogeographic scenarios of this transition. The examined succession comprises four stacked units (U1 to U4, from older to younger). Diamictite-dominated units (U1 and U3), here interpreted as consecutive glaciation–deglaciation events, are separated by non-glacial, continental to shallow marine deposits, commonly bearing fossil plants and coal seams (U2). An important transgression followed the first deglaciation,which is equivalent to the “Eurydesma transgression”, basedonthepresence of marine invertebrates of the homonymous fauna in the Passinho Shale. U2 holds elements of two different floras, i.e., Phyllotheca–Gangamopteris (P–G), predating the “Eurydesma transgression”, and Glossopteris Brasilodendron (G–B), above the transgression. Therefore, U2 is interpreted as an interglacial interval, once it records a climate improving before the last glacial episode of U3, which is further supported by relatively high values of the Chemical Index of Alteration (CIA). Deposits of U3, associated with a decrease in the value of the CIA, are unconformably overlain by U4. The occurrence of coal-bearing postglacial facies (U4) associated with the G–B Flora, coincides with an increase in the CIA values. Sediment transport was toward the SWin all units and in the same direction it is observed an overall thinning of U1 and U3 and thickening of U2. The interglacial P–G Flora of the study area correlates with postglacial southernmost floras, based on U–Pb CA-TIMS Asselian ages of tonsteins. Correlation of the Eurydesma fauna-containing Passinho Shale with equivalent successions with high-precision age control in southern Africa, allowed us to position both deglaciations of the Taciba Formation (U1 and U3) in the Asselian. These findings suggest that U1 and U3 record two early Permian glacial episodes, with the younger one (U3) disappearing southward. Accordingly, our results indicate that the glacial-to-postglacial turnoverwas diachronous along the eastern belt of the Paraná Basin, being progressively older southward, considering that interglacial fossil plant assemblages in the eastern margin correspond in time to postglacial assemblages farther south. 
    more » « less
  6. Piecing together the history of carbon (C) perturbation events throughout Earth’s history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO 2 ) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state. We report pronounced negative C and U isotopic excursions coincident with a doubling of atmospheric CO 2 partial pressure and a biodiversity nadir. The isotopic excursions can be linked to an injection of ∼9,000 Gt of organic matter–derived C over ∼300 kyr and to near 20% of areal extent of seafloor anoxia. Earth system modeling indicates that widespread anoxic conditions can be linked to enhanced thermocline stratification and increased nutrient fluxes during this global warming within an icehouse. 
    more » « less
  7. NOTE: Selected as one of the best papers published in Paleoclimatology Highlights in 2022 (18 papers selected) The rooted nature of vegetation allows for individual plants or entire communities to be buried in life position under exceptional geological conditions, thereby preserving their ecology and spatial distribution in the stratigraphic record. Upright lycopsids are not uncommon within paleoequatorial Carboniferous coal-bearing deposits, but they are rare in mid- to high-paleolatitude Gondwana, where they have only been found in lower Permian strata. An exceptionally well preserved in situ Brasilodendron-like lycopsid forest is described from an early Permian postglacial paleolandscape of western Gondwana (Paran´a Basin, Brazil). The forest depicted here is unique given its extratropical location, as well as the exceptional preservation of abundant specimens and their morphological and paleoecological aspects. Over 150 lycopsid stumps, with a clustered spatial organization, were mapped. The host succession, overlying glaciomarine diamictites by a few tens of meters, captures the terminal deglaciation in the Paran´a Basin, and shows that these forests could establish dense communities on poorly developed soils in postglacial times. Sedimentological data suggest that the death and burial of these lycopsids in life position were caused by crevasse splay progradation over the colonized interdistributary bay areas as a consequence of a major river flooding event. 
    more » « less
  8. Paleosols represent fossil records of paleolandscape processes, paleobiotic interactions with the land surface, and paleoclimate. Paleosol-based reconstructions have figured prominently in the study of significant changes in global climate and terrestrial life, with one of the more highly studied examples being the end-Permian extinction (EPE). The EPE was once thought to consist of synchronous extinctions in the marine realm and the terrestrial realm, with the latter displaying a lower magnitude extinction of vertebrate, insect, and plant life. However, emerging stratigraphic records, anchored by high-precision U–Pb ages, and compilations of fossil taxa indicate that the terrestrial realm on Gondwana experienced an asynchronous extinction record with the marine realm; and, at the global-scale, possibly the lack of a true mass extinction for plant and vertebrate communities. Moreover, paleosol-based interpretations of the EPE on Gondwana typically focus on one depositional basin and extrapolate those finding to assess the potential for global paleoenvironmental/paleoclimatic change. This review compiles observations of paleosols, sedimentology, stratigraphy, and geochemical data across Gondwana during the Late Permian in order to critically assess these interpretations of global change in the lead up to the EPE. 
    more » « less
  9. null (Ed.)
    Fjords are glacially carved estuaries that profoundly influence ice-sheet stability by draining and ablating ice. Although abundant on modern high-latitude continental shelves, fjord-network morphologies have never been identified in Earth’s pre-Cenozoic glacial epochs, hindering our ability to constrain ancient ice-sheet dynamics. We show that U-shaped valleys in northwestern Namibia cut during the late Paleozoic ice age (LPIA, ca. 300 Ma), Earth’s penultimate icehouse, represent intact fjord-network morphologies. This preserved glacial morphology and its sedimentary fill permit a reconstruction of paleo-ice thicknesses, glacial dynamics, and resulting glacio-isostatic adjustment. Glaciation in this region was initially characterized by an acme phase, which saw an extensive ice sheet (1.7 km thick) covering the region, followed by a waning phase characterized by 100-m-thick, topographically constrained outlet glaciers that shrank, leading to glacial demise. Our findings demonstrate that both a large ice sheet and highland glaciers existed over northwestern Namibia at different times during the LPIA. The fjords likely played a pivotal role in glacier dynamics and climate regulation, serving as hotspots for organic carbon sequestration. Aside from the present-day arid climate, northwestern Namibia exhibits a geomorphology virtually unchanged since the LPIA, permitting unique insight into this icehouse. 
    more » « less
  10. null (Ed.)