{"Abstract":["Interactions between plants and soil microbes influence plant\n nutrient transformations, including nitrogen (N) fixation, nutrient\n mineralization, and resource exchanges through fungal networks.\n Physical disturbances to soils can disrupt soil microbes and\n associated processes that support plant and microbial productivity.\n In low resource drylands, biological soil crusts\n ("biocrusts") occupy surface soils and house key\n autotrophic and diazotrophic bacteria, non-vascular plants, or\n lichens. Interactions among biocrusts, plants, and fungal networks\n between them are hypothesized to drive carbon and nutrient dynamics;\n however, comparisons across ecosystems are needed to generalize how\n soil disturbances alter microbial communities and their\n contributions to N pools and transformations. To evaluate linkages\n among plants, fungi, and biocrusts, we disturbed all unvegetated\n surfaces with human foot trampling twice yearly in dry conditions\n from 2013-2018 in cyanobacteria-dominated biocrusts in Chihuahuan\n Desert grassland and shrubland ecosystems. Our study included\n microbial communities and N pools sampled at different time points\n in the disturbance treatments at one or both sites. We began our\n sampling after observations in April 2018 that the chlorophyll a\n content was at least double in control than disturbed plots in both\n ecosystems (Chung et al. 2019). Stomping occurred in May, and we\n collected soil and plant samples in June 2018 for N pools and soil\n and root fungal abundance. We collected additional soil samples in\n September 2018 and conducted the 15N tracer experiment to observe\n rates of N transfer from biocrust to plants before the fall stomp\n treatment in October. We collected chlorophyll a samples and soils\n for sequencing bacteria in September of 2019, also before the fall\n stomp treatment."]}
more »
« less
Phototrophs, electricity, and the circular economy
Purple photosynthetic bacteria are emerging as both valuable biotechnological tools and important players in various ecosystems. This extended abstract highlights recent research from the Bose lab at Washington University in St. Louis touching on both of these ideas. Specifically, it discusses the use of "electrotrophic" bacteria as biocatalysts for microbial electrosynthesis, and the prevalence of these microbes in ecosystems like marine wetlands.
more »
« less
- PAR ID:
- 10506610
- Publisher / Repository:
- Zenodo
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sinking or sedimentation of biological aggregates plays a critical role in carbon sequestration in the ocean and in vertical material fluxes in waste-water treatment plants. In both these contexts, the sinking aggregates are “active,” since they are biological hot-spots and are densely colonized by microorganisms including bacteria and sessile protists, some of which generate feeding currents. However, the effect of these feeding currents on the sinking rates, trajectories, and mass transfer to these "active sinking particles," has not previously been studied. Here we use a novel scale-free vertical-tracking microscope (a.k.a. Gravity Machine, Krishnamurthy et al. "Scale-free vertical tracking microscopy." Nature Methods (2020)) to follow model sinking aggregates (agar spheres) with attached protists (Vorticella convallaria), sinking over long distances while simultaneously measuring local flows. We find that activity due to attached \vortc causes significant changes to the flow around aggregates in a dynamic manner and reshapes mass transport boundary layers. Furthermore, we find that activity-mediated local flows along with sinking modify the encounter and plume cross-sections of the aggregate and induce sustained aggregate rotations. Overall our work shows the important role of biological activity in shaping the near-field flows around aggregates with potentially important effects on aggregate fate and material fluxes.more » « less
-
{"Abstract":["Net primary production is a fundamental ecological variable that\n quantifies rates of carbon consumption and fixation. Estimates of\n NPP are important in understanding energy flow at a community level\n as well as spatial and temporal responses to a range of ecological\n processes. While measures of both below- and above-ground biomass\n are important in estimating total NPP, this study focuses on\n above-ground net primary production (ANPP). Above-ground net primary\n production is the change in plant biomass, including loss to death\n and decomposition, over a given period of time. Volumetric\n measurements are made using vegetation data from permanent plots\n collected in SEV297, "Extreme Drought in Grassland Ecosystems\n (EDGE) Net Primary Production Quadrat Data" and regressions\n correlating biomass and volume constructed using seasonal harvest\n weights from SEV157, "Net Primary Productivity (NPP) Weight\n Data.""]}more » « less
-
Abstract Background Mosses in high-latitude ecosystems harbor diverse bacterial taxa, including N 2 -fixers which are key contributors to nitrogen dynamics in these systems. Yet the relative importance of moss host species, and environmental factors, in structuring these microbial communities and their N 2 -fixing potential remains unclear. We studied 26 boreal and tundra moss species across 24 sites in Alaska, USA, from 61 to 69° N. We used cultivation-independent approaches to characterize the variation in moss-associated bacterial communities as a function of host species identity and site characteristics. We also measured N 2 -fixation rates via 15 N 2 isotopic enrichment and identified potential N 2 -fixing bacteria using available literature and genomic information. Results Host species identity and host evolutionary history were both highly predictive of moss microbiome composition, highlighting strong phylogenetic coherence in these microbial communities. Although less important, light availability and temperature also influenced composition of the moss microbiome. Finally, we identified putative N 2 -fixing bacteria specific to some moss hosts, including potential N 2 -fixing bacteria outside well-studied cyanobacterial clades. Conclusions The strong effect of host identity on moss-associated bacterial communities demonstrates mosses’ utility for understanding plant-microbe interactions in non-leguminous systems. Our work also highlights the likely importance of novel bacterial taxa to N 2 -fixation in high-latitude ecosystems.more » « less
-
Recent research on host-microbe interactions has focused on intimate sym- bioses. Yet transient interactions, such as the stimulation of animal metamorphosis by bac- teria, can have significant impacts on each partner. During these short-lived interactions, swimming animal larvae identify a desirable location on the seafloor and undergo meta- morphosis into a juvenile based on the presence of specific bottom-dwelling bacteria. While this phenomenon is critical for seeding new animals to establish or maintain benthic ecosystems, there is an ocean of fundamental questions that remain unanswered. Here, I propose an updated model of how bacteria stimulate animal metamorphosis based on evi- dence that bacteria inject a stimulatory protein that prompts tubeworm metamorphosis. I consider what we hope to learn about stimulatory bacterial products, how animals recog- nize these products, and the consequences for both partners. Finally, I provide examples of how studying an enigmatic host-microbe interaction can serve as an engine for scientific discovery.more » « less
An official website of the United States government

