skip to main content


Title: Quantification of the hardness response in the heat-affected zone of low alloy steels subjected to temper bead welding
The tempering response in the heat-affected zone (HAZ) of low alloy steels during temper bead welding is heavily dependent on the experienced thermal history. Past work has developed quantification approaches for isothermal tempering conditions and single non-isothermal tempering cycles, whereas the temper bead welding processes impart multiple non-isothermal cycles throughout the HAZ. This work outlines a novel methodology for tempering response quantification that allows for prediction of the HAZ hardness in multipass welding. The quantification approach utilizes a modification of the Grange-Baughman tempering parameter that converts non-isothermal cycles into an equivalent isothermal cycle and correlate this with the resulting hardness. This relationship can be utilized to evaluate hardness distributions throughout the HAZ of low alloy steel temper bead weldments based on the experienced thermal histories. It was shown that, in contrast with conventional heat treatment, the temper bead welding in Grade 22 steel results in nucleation of high density, finely dispersed Fe-Cr rich carbides. The proposed methodology was applied for evaluation of the HAZ hardness in a particular heat of Grade 22 steel, resulting from multiple tempering reheats, and was experimentally validated using a three-layer weld overlay. It was found that the peak temperature of weld tempering cycles was the most significant factor in controlling HAZ hardness.  more » « less
Award ID(s):
2052747
NSF-PAR ID:
10506622
Author(s) / Creator(s):
;
Publisher / Repository:
ScienceDirect
Date Published:
Journal Name:
Journal of Manufacturing Processes
Volume:
66
Issue:
C
ISSN:
1526-6125
Page Range / eLocation ID:
325 to 340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Temper bead (TB) welding is often used as an alternative to post weld heat treatment (PWHT) for repair of pressure vessels and piping in the nuclear power industry. Historically, qualification of TB welding procedures has employed the Charpy V-notch test to ensure acceptable heat-affected-zone (HAZ) impact properties. The 2004 Edition of ASME Section IX provided a new provision in QW-290 that allows temper bead qualification using a peak hardness criterion. The peak hardness provision is appropriate for industries such as oil and gas, where peak allowable hardness is specified to ensure adequate resistance to sulfide stress cracking in sour service environments. However, a peak hardness criterion is not appropriate where impact properties are specified for resistance to brittle fracture during low temperature conditions that can occur during certain postulated accident scenarios at a nuclear power plant.

    Work at the Electric Power Research Institute (EPRI) and The Ohio State University (OSU) show that a hardness drop protocol can be used to demonstrate acceptable impact properties in the HAZ of a temper bead weld. This paper presents a quantitative correlation between hardness measurements and HAZ microstructures with presumed optimum impact properties using a hardness drop approach. The overarching goal is to develop a hardness test protocol for temper bead weld procedure qualification for applications where impact properties are specified.

     
    more » « less
  2. API 5L Grade X65 steel pipes, internally clad alloy 625, are commonly utilized in pipelines and risers for subsea oil and gas extraction. Gird welds in such pipes are conventionally made using alloy 625 filler metal. However, alloy 625 weld metal cannot meet the base metal yield strength overmatching requirement for subsea reel lay installation. This study explored materials selection and process development for low-alloy steel girth welds in API 5L Grade X65 steel pipes, internally clad with alloy 625. Welding with a higher melting point filler metal over a lower melting substrate, i.e., low-alloy steel over Ni-based alloy, is impractical due to increased susceptibility to solidification cracking and solidification shrinkage porosity. Pseudo-binary phase diagrams developed for various combinations of low alloy steel filler metals and Ni-based alloy substrates identified good compatibility between ER80S-G filler metal and alloy 686. The solidification temperature range and the tendency for partitioning of alloying elements were significantly lower throughout the entire ER80S-G/alloy 686 dilution range than in the low alloy steel filler metals/alloy 625 combinations. Extensive process optimization effort to reduce the dilution of alloy 686 root pass in the low-alloy steel weld metal and avoid incomplete fusion defects allowed for the production of defect-free girth welds. These welds met the yield strength and ductility requirements for subsea reel lay installation of pipelines. Process optimization for bead tempering significantly narrowed the high hardness region in the ER80S-G/alloy 686 partially mixed zone. 
    more » « less
  3. Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high-strength steels to eliminate the need for post-weld heat treatment (PWHT) in field welding. Hydrogen-assisted cracking (HAC) can occur in DMWs during subsea service under cathodic protection. DMWs of two material combinations, 8630 steel/FM 625 and F22 steel/FM 625, produced with two welding procedures, non-temper bead (BS1) and temper bead (BS3), in the as-welded and PWHT conditions were investigated in this study. These DMWs were subjected to metallurgical characterization and testing with the delayed hydrogen cracking test (DHCT) to identify the effects of base metal composition, welding and PWHT procedures on their HAC susceptibility. The HAC susceptibility was ranked using the time to failure in the DHCT at loads equivalent to 90% of the base metal yield strength (YS) and the apparent stress threshold for HAC. A criterion for resistance to HAC in the testing conditions of DHCT was also established. The results of this study showed that 8630/FM 625 DMWs were more susceptible to HAC than the F22/FM 625 DMWs. PWHT did not sufficiently reduce the HAC susceptibility of the 8630/FM 625 and F22/FM 625 BS1 welds. DMWs produced using BS3 performed better than BS1 DMWs. The post-weld heat-treated F22/FM 625 BS3 DMW passed the HAC resistance criterion. 
    more » « less
  4. A dissimilar weld between a low alloy steel (LAS) butter weld joined to a F65 steel pipe using a narrow groove hot wire gas tungsten arc welding (HW-GTAW) procedure with Alloy 625 filler metal was investigated. The weld interpass microstructure is comprised of large swirls formed by a macrosegregation mechanism involving partial, non-uniform mixing of liquid base metal with the lower melting temperature weld pool, followed by fast solidification. This mechanism produces steep gradients in composition and solidification behavior. The resulting swirls are composed of alternating iron-rich peninsulas and partially mixed zones (PMXZ) that are surrounded by planar and cellular zones exhibiting multiple solidification directions. Large austenitic grains, encompassing planar, cellular, and dendritic morphologies, nucleate off peninsulas in direct contact with the weld pool. The highest hardness was found in nickel and chromium rich PMXZs that exhibited a lath martensite microstructure. In the event of exposure to hydrogen containing environments, the PMXZs could serve as nucleation sites for hydrogen assisted cracking. 
    more » « less
  5. This study addresses the limitations of cross weld tensile testing (CWTT) in quantifying local mechanical properties across microstructural and compositional gradients in dissimilar– and matching–filler metal welds. A digital image correlation (DIC) methodology was validated for application in CWTT by direct comparison of stress-strain curves generated using conventional and virtual DIC extensometers in tensile testing of homogeneous steel samples. DIC-instrumented CWTT of dissimilar weld metal Alloy 625 filler metal on F65 steel demonstrated capability in quantifying the local yield strength, strain-hardening kinetics, and strain at failure in the base metal, heat-affected zone (HAZ), fusion boundary (FB) region, and weld metal in dissimilar and matching filler metal welds. It was shown that the high strain-hardening capacity in Alloy 625 weld metal led to base metal failure in CWTT despite the lower Alloy 625 weld metal yield strength. It was also shown that DIC-instrumented CWTT can be used for determining weld metal undermatching and overmatching conditions in compositionally matching- and dissimilar-metal welds. Furthermore, by quantifying local strain distribution (both elastic and plastic) in the HAZ, FB region, and weld metal, DIC-instrumented CWTT provides an additional method for evaluating hydrogen-assisted cracking susceptibility in dissimilar-metal welds.

     
    more » « less