Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfund site located in the Midwestern United States, Joplin, Missouri.
more »
« less
Precipitant Effects on Aggregates Structure of Asphaltene and Their Implications for Groundwater Remediation
Asphaltenes generally aggregate, then precipitate and deposit on the surfaces of environmental media (soil, sediment, aquifer, and aquitard). Previous studies have recognized the importance of asphaltene aggregates on the wettability of aquifer systems, which has long been regarded as a limiting factor that determines the feasibility and remediation efficiency of sites contaminated by heavy oils. However, the mechanisms/factors associated with precipitant effects on asphaltene aggregates structure, and how the precipitant effects influence the wettability of surfaces remain largely unknown. Here, we observe the particle-by-particle growth of asphaltene aggregates formed at different precipitant concentrations. Our results show that aggregates for all precipitant concentrations are highly polydisperse with self-similar structures. A higher precipitant concentration leads to a more compacted aggregates structure, while precipitant concentration near to onset point results in a less compact structure. The well-known Smoluchowski model is inadequate to describe the structural evolutions of asphaltene aggregates, even for aggregation scenarios induced by a precipitant concentration at the onset point where the Smoluchowski model is expected to explain the aggregate size distribution. It is suggested that aggregates with relative high fractal dimensions observed at high precipitant concentrations can be used to explain the relatively low Stokes settling velocities observed for large asphaltene aggregates. In addition, asphaltene aggregates with high fractal dimensions are likely to have high density of nanoscale roughness which could enhance the hydrophobicity of interfaces when they deposit on the sand surface. Findings obtained from this study advance our current understandings on the fate and transport of heavy oil contaminants in the subsurface environment, which will have important implications for designing and implementing more effective and efficient remediation technologies for contaminated sites.
more »
« less
- Award ID(s):
- 1836905
- PAR ID:
- 10389869
- Date Published:
- Journal Name:
- Water
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 2116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Walker, Gilbert (Ed.)Microplastics (MPs) and nanoplastics (NPs) in water pose a global threat to human health and the environment. To develop efficient removal strategies, it is crucial to understand how these particles behave as they aggregate. However, our knowledge of the process of aggregate formation from primary particles of different sizes is limited. In this study, we analyzed the growth kinetics and structures of aggregates formed by polystyrene MPs in mono- and bidisperse systems using in situ microscopy and image analysis. Our findings show that the scaling behavior of aggregate growth remains unaffected by the primary particle size distribution, but it does delay the onset of rapid aggregation. We also performed a structural analysis that reveals the power law dependence of aggregate fractal dimension (df) in both mono- and bidisperse systems, with mean df consistent with diffusion-limited cluster aggregation (DLCA) aggregates. Our results also suggest that the df of aggregates is insensitive to the shape anisotropy. We simulated molecular forces driving aggregation of polystyrene NPs of different sizes under high ionic strength conditions. These conditions represent salt concentration in ocean water and wastewater, where the DLVO theory does not apply. Our simulation results show that the aggregation tendency of the NPs increases with the ionic strength. The increase in the aggregation is caused by the depletion of clusters of ions from the NPs surface.more » « less
-
ABSTRACT The utilization of predictive mechanisms to resolve asphaltene precipitation during oil production is a cleaner and less expensive means than the mechanical/chemical remediation techniques currently employed. Existing models lack predictive success due to opposing views on temperature-asphaltene precipitation interactions. In this study, the effect of varying temperatures (40, 50, 60, 70 80 and 90 °C) and brine concentrations (0 – 5 wt.%) on the long-time kinetics of asphaltene precipitations was evaluated. A series of experiments were conducted using the filtration technique and the confocal microscopy to study asphaltene precipitation on a model oil system consisting of asphaltenes, a precipitant, and a solvent. Furthermore, the Avrami modeling technique was employed to predict the morphology, and growth rate of the precipitating asphaltenes. The experimental results suggested that temperature significantly affects asphaltene precipitation including imparting its precipitation mechanism with a cross-behavioral pattern. Asphaltene precipitation in the system displayed an initial fast kinetics upon increasing temperature. The fast kinetics observed in the early times is due to the increasing dipole-dipole interactions between asphaltene sub-micron particles stimulated by increased temperature. However, the pattern changes into slower precipitations as the time progresses upon continuous heating of the reservoir fluid. The reason is the increased solubility of the asphaltenes imparted into the model oil system upon further increments in temperature. The presence of brine in the model-oil system also enhanced the rate and precipitation of asphaltenes. The experimental data were further analyzed with the Avrami crystallization fitting model to predict the formation, growth, morphology, and growth geometry of the precipitating asphaltenes. The Avrami model successfully predicted the asphaltene morphologies, growth rates and the crystal growth geometries. The growth geometries (rods, discs, or spheres) of the asphaltenes in the model oil systems upon temperature increments, ranged from 1.4 – 3.5. These values are indicative that temperature impacts the growth process of asphaltenes in the model system causing variations from a rod-like sporadic process (1.0 ≤ n ≤ 1.9) to a spherical sporadic growth process (3.0 ≤ n ≤ 3.9). This work precisely emphasizes the impact of temperature on asphaltene precipitations under long kinetic time, thus, providing a clear pathway for developing successful kinetic and thermodynamic models capable of predicting asphaltene precipitation reliably. The accurate prediction of asphaltene precipitation will eliminate the need for the use of harmful remediation solvents like benzene/toluene/ethylbenzene/xylene (BTEX). This study is therefore a critical step in the right direction to achieving accurate predictive model evaluations of asphaltene precipitations.more » « less
-
Marine snow aggregates often dominate carbon export from the surface layer to the deep ocean. Therefore, understanding the formation and properties of aggregates is essential to the study of the biological pump. Previous studies have observed a relationship between phytoplankton growth phase and the production of transparent exopolymer particles (TEP), the sticky particles secreted by phytoplankton that act as the glue during aggregate formation. In this experimental study, we aim to determine the effect of phytoplankton growth phase on properties related to aggregate settling. Cultures of the diatom Thalassiosira weissflogii were grown to four different growth phases and incubated in rotating cylindrical tanks to form aggregates. Aggregate excess density and delayed settling time through a sharp density gradient were quantified for the aggregates that were formed, and relative TEP concentration was measured for cultures before aggregate formation. Compared to the first growth phase, later phytoplankton growth phases were found to have higher relative TEP concentration and aggregates with lower excess densities and longer delayed settling times. These findings may suggest that, although particle concentrations are higher at later stages of phytoplankton blooms, aggregates may be less dense and sink slower, thus affecting carbon export.more » « less
-
Asphaltenes are the heaviest and most polarizable fractions of crude oil. During the oil production process, changes in the temperature, pressure, and oil composition can destabilize asphaltenes. This destabilization leads to asphaltene aggregation and deposition, which can cause major clogging problems in both the wellbore and near-wellbore regions as well as the production facilities. In this study, we developed and investigated the application of acrylic acid and 2-acrylanmido-2-methylpropanesulfonic acid (AA–AMPS)-functionalized magnetic nanoparticles as a surface coating in inhibiting asphaltene deposition. The use of the porous media microfluidic platform allows for efficient evaluation of the effectiveness of the nanoparticle coating in mitigating asphaltene deposition in various crude oils. We demonstrated that the nanoparticle coating is effective in inhibiting asphaltene deposition, showing up to a 75% improvement in permeability change. The study also explores the dynamics of asphaltene aggregation and deposition in different crude oils. We identified factors such as asphaltene aggregate size as well as the physical and chemical characteristics of the aggregates that can determine the effectiveness of different mitigation methods.more » « less
An official website of the United States government

