skip to main content


Title: A Taxonomy of Side-Channels
After the discovery of data leakage from cryptographic algorithm implementations, there has been a need to counter or hide the data that allow adversaries to capture the cryptographic key. To explore side-channel attack methods or countermeasures, it is important for researchers to understand what side-channels are and how they are produced. There have been numerous surveys in which the side-channel attacks and countermeasures are surveyed, but little to no research about the side-channels themselves. This paper addresses this gap in the existing literature by developing a taxonomy for side-channels, classified by the manner in which they are produced. Following the proposed model, some of the common side-channel analysis attack methods are discussed and we show where the side-channel would fit in the proposed model.  more » « less
Award ID(s):
2142948
PAR ID:
10506676
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of IEEE Southeastcon
ISSN:
1558-058X
ISBN:
979-8-3503-1710-7
Page Range / eLocation ID:
1564 to 1570
Format(s):
Medium: X
Location:
Atlanta, GA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The threats of physical side-channel attacks and their countermeasures have been widely researched. Most physical side-channel attacks rely on the unavoidable influence of computation or storage on current consumption or voltage drop on a chip. Such data-dependent influence can be exploited by, for instance, power or electromagnetic analysis. In this work, we introduce a novel non-invasive physical side-channel attack, which exploits the data-dependent changes in the impedance of the chip. Our attack relies on the fact that the temporarily stored contents in registers alter the physical characteristics of the circuit, which results in changes in the die's impedance. To sense such impedance variations, we deploy a well-known RF/microwave method called scattering parameter analysis, in which we inject sine wave signals with high frequencies into the system's power distribution network (PDN) and measure the echo of the signals. We demonstrate that according to the content bits and physical location of a register, the reflected signal is modulated differently at various frequency points enabling the simultaneous and independent probing of individual registers. Such side-channel leakage challenges the t-probing security model assumption used in masking, which is a prominent side-channel countermeasure. To validate our claims, we mount non-profiled and profiled impedance analysis attacks on hardware implementations of unprotected and high-order masked AES. We show that in the case of the profiled attack, only a single trace is required to recover the secret key. Finally, we discuss how a specific class of hiding countermeasures might be effective against impedance leakage. 
    more » « less
  2. This paper investigates countermeasures to side-channel attacks. A dynamic partial reconfiguration (DPR) method is proposed for field programmable gate arrays (FPGAs)s to make techniques such as differential power analysis (DPA) and correlation power analysis (CPA) difficult and ineffective. We call the technique side-channel power resistance for encryption algorithms using DPR, or SPREAD. SPREAD is designed to reduce cryptographic key related signal correlations in power supply transients by changing components of the hardware implementation on-the-fly using DPR. Replicated primitives within the advanced encryption standard (AES) algorithm, in particular, the substitution-box (SBOX)s, are synthesized to multiple and distinct gate-level implementations. The different implementations change the delay characteristics of the SBOXs, reducing correlations in the power traces, which, in turn, increases the difficulty of side-channel attacks. The effectiveness of the proposed countermeasures depends greatly on this principle; therefore, the focus of this paper is on the evaluation of implementation diversity techniques. 
    more » « less
  3. This paper investigates countermeasures to side-channel attacks. A dynamic partial reconfiguration (DPR) method is proposed for field programmable gate arrays (FPGAs)s to make techniques such as differential power analysis (DPA) and correlation power analysis (CPA) difficult and ineffective. We call the technique side-channel power resistance for encryption algorithms using DPR, or SPREAD. SPREAD is designed to reduce cryptographic key related signal correlations in power supply transients by changing components of the hardware implementation on-the-fly using DPR. Replicated primitives within the advanced encryption standard (AES) algorithm, in particular, the substitution-box (SBOX)s, are synthesized to multiple and distinct gate-level implementations. The different implementations change the delay characteristics of the SBOXs, reducing correlations in the power traces, which, in turn, increases the difficulty of side-channel attacks. The effectiveness of the proposed countermeasures depends greatly on this principle; therefore, the focus of this paper is on the evaluation of implementation diversity techniques. 
    more » « less
  4. This paper investigates countermeasures to side-channel attacks. A dynamic partial reconfiguration (DPR) method is proposed for field programmable gate arrays (FPGAs)s to make techniques such as differential power analysis (DPA) and correlation power analysis (CPA) difficult and ineffective. We call the technique side-channel power resistance for encryption algorithms using DPR, or SPREAD. SPREAD is designed to reduce cryptographic key related signal correlations in power supply transients by changing components of the hardware implementation on-the-fly using DPR. Replicated primitives within the advanced encryption standard (AES) algorithm, in particular, the substitution-box (SBOX)s, are synthesized to multiple and distinct gate-level implementations. The different implementations change the delay characteristics of the SBOXs, reducing correlations in the power traces, which, in turn, increases the difficulty of side-channel attacks. The effectiveness of the proposed countermeasures depends greatly on this principle; therefore, the focus of this paper is on the evaluation of implementation diversity techniques. 
    more » « less
  5. Side-channel analysis is a non-invasive form of attack that reveals the secret key of the cryptographic circuit by analyzing the leaked physical information. The traditional brute-force and cryptanalysis attacks target the weakness in the encryption algorithm, whereas side-channel attacks use statistical models such as differential analysis and correlation analysis on the leaked information gained from the cryptographic device during the run-time. As a non-invasive and passive attack, the side-channel attack brings a lot of difficulties for detection and defense. In this work, we propose a key update scheme as a countermeasure for power and electromagnetic analysis-based attacks on the cryptographic device. The proposed countermeasure utilizes a secure coprocessor to provide secure key generation and storage in a trusted environment. The experimental results show that the proposed key update scheme can mitigate side-channel attacks significantly. 
    more » « less