Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high-strength steels to eliminate the need for post-weld heat treatment (PWHT) in field welding. Hydrogen-assisted cracking (HAC) can occur in DMWs during subsea service under cathodic protection. DMWs of two material combinations, 8630 steel/FM 625 and F22 steel/FM 625, produced with two welding procedures, non-temper bead (BS1) and temper bead (BS3), in the as-welded and PWHT conditions were investigated in this study. These DMWs were subjected to metallurgical characterization and testing with the delayed hydrogen cracking test (DHCT) to identify the effects of base metal composition, welding and PWHT procedures on their HAC susceptibility. The HAC susceptibility was ranked using the time to failure in the DHCT at loads equivalent to 90% of the base metal yield strength (YS) and the apparent stress threshold for HAC. A criterion for resistance to HAC in the testing conditions of DHCT was also established. The results of this study showed that 8630/FM 625 DMWs were more susceptible to HAC than the F22/FM 625 DMWs. PWHT did not sufficiently reduce the HAC susceptibility of the 8630/FM 625 and F22/FM 625 BS1 welds. DMWs produced using BS3 performed better than BS1 DMWs. The post-weld heat-treated F22/FM 625 BS3 DMW passed the HAC resistance criterion.
more »
« less
A Contribution to the Analysis of the Effects of Pulsed Current in GTAW Welding of 1-mm-Thick AISI 304 Sheets
GTAW welding with pulsed current has been misinterpreted in some of the classic literature and scientific articles. General conclusions are presented, stating that its use provides greater penetration compared to the use of constant current and that the simple pulsation of the current promotes beneficial metallurgical effects. Therefore, this manuscript presents a critical analysis of this topic and adopts the terminology of thermal pulsation for the situation where the weld undergoes sensitive effects, regarding grain orientation during solidification. For comparison purposes, an index called the form factor (ratio between the root width and the face width of the weld bead) is adopted. It is shown that the penetration of a welding with pulsed current can be worse than constant current depending on the formulation of the adopted procedure. Moreover, metallurgical effects on solidification, such as grain orientation breakage, only occur when there is adequate concatenation between the pulsation frequency and the welding speed. Finally, a thermal simulation of the process showed that the pulsation frequency limits the welding speed so that there is an overlap of the molten pool in each current pulse, and continuity of the bead is obtained at the root. For frequencies of 1 Hz and 2.5 Hz, the limit welding speed was 3.3 mm/s and 4.1 mm/s, respectively.
more »
« less
- PAR ID:
- 10506691
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Metals
- Volume:
- 13
- Issue:
- 8
- ISSN:
- 2075-4701
- Page Range / eLocation ID:
- 1387
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The tempering response in the heat-affected zone (HAZ) of low alloy steels during temper bead welding is heavily dependent on the experienced thermal history. Past work has developed quantification approaches for isothermal tempering conditions and single non-isothermal tempering cycles, whereas the temper bead welding processes impart multiple non-isothermal cycles throughout the HAZ. This work outlines a novel methodology for tempering response quantification that allows for prediction of the HAZ hardness in multipass welding. The quantification approach utilizes a modification of the Grange-Baughman tempering parameter that converts non-isothermal cycles into an equivalent isothermal cycle and correlate this with the resulting hardness. This relationship can be utilized to evaluate hardness distributions throughout the HAZ of low alloy steel temper bead weldments based on the experienced thermal histories. It was shown that, in contrast with conventional heat treatment, the temper bead welding in Grade 22 steel results in nucleation of high density, finely dispersed Fe-Cr rich carbides. The proposed methodology was applied for evaluation of the HAZ hardness in a particular heat of Grade 22 steel, resulting from multiple tempering reheats, and was experimentally validated using a three-layer weld overlay. It was found that the peak temperature of weld tempering cycles was the most significant factor in controlling HAZ hardness.more » « less
-
Abstract This work studies Metal Inert Gas (MIG) based Wire Arc Additive Manufacturing (WAAM) for nanoparticle enhanced AA7075. MIG WAAM is important for production and large structures due to its high deposition rates compared to Tungsten Inert Gas (TIG) or powder-based AM processes. Both MIG and TIG take advantage of wire feedstock, which is more readily available than powdered metals since the welding technology has been established for decades. Powder based processes allow for more complicated geometries but take significantly more time to produce and can suffer from voids which lead to non-uniform part density. TIG is normally used in welding of aluminum because it results in fewer defects, but the TiC/TiB2 nanoparticles eliminate solidification cracking normally associated with high strength aluminum alloys during welding. Porosity is another problem faced when welding aluminum, which can be affected by many things including deposition parameters, atmosphere and even the welding equipment used. Effects of different deposition parameters have been comprehensively studied including the deposition geometry and metallurgical properties. The process is also monitored with current/voltage measurement and high-speed imaging to understand the droplet transfer mode and molten pool development. The results are used to optimize process parameters to achieve the fewest defects possible while comparing different metal transfer modes. Multi-scale characterizations will be performed to examine the porosity distribution, solidification mode and grain size through optical microscopy. Future works will explore the distribution of secondary phases, precipitates, and nanoparticles through scanning electron microscopy (SEM) as well as conducting some mechanical testing of the as built structures such as hardness mapping and tensile tests.more » « less
-
Abstract Ultrasonic additive manufacturing (UAM) is a solid state manufacturing process capable of producing near-net-shape metal parts. Recent studies have shown the promise of UAM welding of steels. However, the effect of weld parameters on the weld quality of UAM steel is unclear. A design of experiments study based on a Taguchi L16 design array was conducted to investigate the influence of parameters including baseplate temperature, amplitude, welding speed, and normal force on the interfacial temperature and shear strength of UAM welding of carbon steel 4130. Analysis of variance (ANOVA) and main effects analyses were performed to determine the effect of each parameter. A Pearson correlation test was conducted to find the relationship between interfacial temperature and shear strength. These analyses indicate that a maximum shear strength of 392.8 MPa can be achieved by using a baseplate temperature of 400°F (204.4°C), amplitude of 31.5 μm, welding speed of 40 in/min (16.93 mm/s), and normal force of 6000 N. The Pearson correlation coefficient is calculated as 0.227, which indicates no significant correlation between interfacial temperature and shear strength over the range tested.more » « less
-
API 5L Grade X65 steel pipes, internally clad alloy 625, are commonly utilized in pipelines and risers for subsea oil and gas extraction. Gird welds in such pipes are conventionally made using alloy 625 filler metal. However, alloy 625 weld metal cannot meet the base metal yield strength overmatching requirement for subsea reel lay installation. This study explored materials selection and process development for low-alloy steel girth welds in API 5L Grade X65 steel pipes, internally clad with alloy 625. Welding with a higher melting point filler metal over a lower melting substrate, i.e., low-alloy steel over Ni-based alloy, is impractical due to increased susceptibility to solidification cracking and solidification shrinkage porosity. Pseudo-binary phase diagrams developed for various combinations of low alloy steel filler metals and Ni-based alloy substrates identified good compatibility between ER80S-G filler metal and alloy 686. The solidification temperature range and the tendency for partitioning of alloying elements were significantly lower throughout the entire ER80S-G/alloy 686 dilution range than in the low alloy steel filler metals/alloy 625 combinations. Extensive process optimization effort to reduce the dilution of alloy 686 root pass in the low-alloy steel weld metal and avoid incomplete fusion defects allowed for the production of defect-free girth welds. These welds met the yield strength and ductility requirements for subsea reel lay installation of pipelines. Process optimization for bead tempering significantly narrowed the high hardness region in the ER80S-G/alloy 686 partially mixed zone.more » « less
An official website of the United States government

