skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Covariate-adjusted log-rank test: guaranteed efficiency gain and universal applicability
Summary Nonparametric covariate adjustment is considered for log-rank-type tests of the treatment effect with right-censored time-to-event data from clinical trials applying covariate-adaptive randomization. Our proposed covariate-adjusted log-rank test has a simple explicit formula and a guaranteed efficiency gain over the unadjusted test. We also show that our proposed test achieves universal applicability in the sense that the same formula of test can be universally applied to simple randomization and all commonly used covariate-adaptive randomization schemes such as the stratified permuted block and the Pocock–Simon minimization, which is not a property enjoyed by the unadjusted log-rank test. Our method is supported by novel asymptotic theory and empirical results for Type-I error and power of tests.  more » « less
Award ID(s):
1914411
PAR ID:
10506748
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrika
Volume:
111
Issue:
2
ISSN:
0006-3444
Format(s):
Medium: X Size: p. 691-705
Size(s):
p. 691-705
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It is common to conduct causal inference in matched observational studies by proceeding as though treatment assignments within matched sets are assigned uniformly at random and using this distribution as the basis for inference. This approach ignores observed discrepancies in matched sets that may be consequential for the distribution of treatment, which are succinctly captured by within-set differences in the propensity score. We address this problem via covariate-adaptive randomization inference, which modifies the permutation probabilities to vary with estimated propensity score discrepancies and avoids requirements to exclude matched pairs or model an outcome variable. We show that the test achieves type I error control arbitrarily close to the nominal level when large samples are available for propensity score estimation. We characterize the large-sample behaviour of the new randomization test for a difference-in-means estimator of a constant additive effect. We also show that existing methods of sensitivity analysis generalize effectively to covariate-adaptive randomization inference. Finally, we evaluate the empirical value of combining matching and covariate-adaptive randomization procedures using simulations and analyses of genetic damage among welders and right-heart catheterization in surgical patients. 
    more » « less
  2. Summary Since the introduction of fiducial inference by Fisher in the 1930s, its application has been largely confined to relatively simple, parametric problems. In this paper, we present what might be the first time fiducial inference is systematically applied to estimation of a nonparametric survival function under right censoring. We find that the resulting fiducial distribution gives rise to surprisingly good statistical procedures applicable to both one-sample and two-sample problems. In particular, we use the fiducial distribution of a survival function to construct pointwise and curvewise confidence intervals for the survival function, and propose tests based on the curvewise confidence interval. We establish a functional Bernstein–von Mises theorem, and perform thorough simulation studies in scenarios with different levels of censoring. The proposed fiducial-based confidence intervals maintain coverage in situations where asymptotic methods often have substantial coverage problems. Furthermore, the average length of the proposed confidence intervals is often shorter than the length of confidence intervals for competing methods that maintain coverage. Finally, the proposed fiducial test is more powerful than various types of log-rank tests and sup log-rank tests in some scenarios. We illustrate the proposed fiducial test by comparing chemotherapy against chemotherapy combined with radiotherapy, using data from the treatment of locally unresectable gastric cancer. 
    more » « less
  3. This paper studies inference in randomized controlled trials with covariate‐adaptive randomization when there are multiple treatments. More specifically, we study in this setting inference about the average effect of one or more treatments relative to other treatments or a control. As in Bugni, Canay, and Shaikh (2018), covariate‐adaptive randomization refers to randomization schemes that first stratify according to baseline covariates and then assign treatment status so as to achieve “balance” within each stratum. Importantly, in contrast to Bugni, Canay, and Shaikh (2018), we not only allow for multiple treatments, but further allow for the proportion of units being assigned to each of the treatments to vary across strata. We first study the properties of estimators derived from a “fully saturated” linear regression, that is, a linear regression of the outcome on all interactions between indicators for each of the treatments and indicators for each of the strata. We show that tests based on these estimators using the usual heteroskedasticity‐consistent estimator of the asymptotic variance are invalid in the sense that they may have limiting rejection probability under the null hypothesis strictly greater than the nominal level; on the other hand, tests based on these estimators and suitable estimators of the asymptotic variance that we provide are exact in the sense that they have limiting rejection probability under the null hypothesis equal to the nominal level. For the special case in which the target proportion of units being assigned to each of the treatments does not vary across strata, we additionally consider tests based on estimators derived from a linear regression with “strata fixed effects,” that is, a linear regression of the outcome on indicators for each of the treatments and indicators for each of the strata. We show that tests based on these estimators using the usual heteroskedasticity‐consistent estimator of the asymptotic variance are conservative in the sense that they have limiting rejection probability under the null hypothesis no greater than and typically strictly less than the nominal level, but tests based on these estimators and suitable estimators of the asymptotic variance that we provide are exact, thereby generalizing results in Bugni, Canay, and Shaikh (2018) for the case of a single treatment to multiple treatments. A simulation study and an empirical application illustrate the practical relevance of our theoretical results. 
    more » « less
  4. Background:When conducting a randomized controlled trial, it is common to specify in advance the statistical analyses that will be used to analyze the data. Typically, these analyses will involve adjusting for small imbalances in baseline covariates. However, this poses a dilemma, as adjusting for too many covariates can hurt precision more than it helps, and it is often unclear which covariates are predictive of outcome prior to conducting the experiment. Objectives:This article aims to produce a covariate adjustment method that allows for automatic variable selection, so that practitioners need not commit to any specific set of covariates prior to seeing the data. Results:In this article, we propose the “leave-one-out potential outcomes” estimator. We leave out each observation and then impute that observation’s treatment and control potential outcomes using a prediction algorithm such as a random forest. In addition to allowing for automatic variable selection, this estimator is unbiased under the Neyman–Rubin model, generally performs at least as well as the unadjusted estimator, and the experimental randomization largely justifies the statistical assumptions made. 
    more » « less
  5. Abstract We identify member stars of more than 90 open clusters in the LAMOST survey. With the method of Fang et al., the chromospheric activity (CA) indices,for 1091 member stars in 82 open clusters andfor 1118 member stars in 83 open clusters, are calculated. The relations between the average,in each open cluster and its age are investigated in differentTeffand [Fe/H] ranges. We find that CA starts to decrease slowly from logt = 6.70 to logt = 8.50, and then decreases rapidly until logt = 9.53. The trend becomes clearer for cooler stars. The quadratic functions between logR′ and logtwith 4000 K  < Teff < 5500 K are constructed, which can be used to roughly estimate ages of field stars with accuracy about 40% forand 60% for. 
    more » « less