skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pattern formation in a four-ring reaction-diffusion network with heterogeneity
In networks of nonlinear oscillators, symmetries place hard constraints on the system that can be exploited to predict universal dynamical features and steady states, providing a rare generic organizing principle for far-from-equilibrium systems. However, the robustness of this class of theories to symmetry-disrupting imperfections is untested in free-running (i.e., non-computer-controlled) systems. Here, we develop a model experimental reaction-diffusion network of chemical oscillators to test applications of the theory of dynamical systems with symmeries in the context of self-organizing systems relevant to biology and soft robotics. The network is a ring of four microreactors containing the oscillatory Belousov-Zhabotinsky reaction coupled to nearest neighbors via diffusion. Assuming homogeneity across the oscillators, theory predicts four categories of stable spatiotemporal phase-locked periodic states and four categories of invariant manifolds that guide and structure transitions between phase-locked states. In our experiments, we observed that three of the four phase-locked states were displaced from their idealized positions and, in the ensemble of measurements, appeared as clusters of different shapes and sizes, and that one of the predicted states was absent. We also observed the predicted symmetry-derived synchronous clustered transients that occur when the dynamical trajectories coincide with invariant manifolds. Quantitative agreement between experiment and numerical simulations is found by accounting for the small amount of experimentally determined heterogeneity in intrinsic frequency. We further elucidate how different patterns of heterogeneity impact each attractor differently through a bifurcation analysis. We show that examining bifurcations along invariant manifolds provides a general framework for developing intuition about how chemical-specific dynamics interact with topology in the presence of heterogeneity that can be applied to other oscillators in other topologies.  more » « less
Award ID(s):
2011846
PAR ID:
10506790
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review E
Volume:
105
Issue:
2
ISSN:
2470-0045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Symmetry-breaking in coupled, identical, fast–slow systems produces a rich, dramatic variety of dynamical behavior—such as amplitudes and frequencies differing by an order of magnitude or more and qualitatively different rhythms between oscillators, corresponding to different functional states. We present a novel method for analyzing these systems. It identifies the key geometric structures responsible for this new symmetry-breaking, and it shows that many different types of symmetry-breaking rhythms arise robustly. We find symmetry-breaking rhythms in which one oscillator exhibits small-amplitude oscillations, while the other exhibits phase-shifted small-amplitude oscillations, large-amplitude oscillations, mixed-mode oscillations, or even undergoes an explosion of limit cycle canards. Two prototypical fast–slow systems illustrate the method: the van der Pol equation that describes electrical circuits and the Lengyel–Epstein model of chemical oscillators. 
    more » « less
  2. Abstract M. Kruskal showed that each continuous-time nearly periodic dynamical system admits a formalU(1)-symmetry, generated by the so-called roto-rate. When the nearly periodic system is also Hamiltonian, Noether’s theorem implies the existence of a corresponding adiabatic invariant. We develop a discrete-time analog of Kruskal’s theory. Nearly periodic maps are defined as parameter-dependent diffeomorphisms that limit to rotations along aU(1)-action. When the limiting rotation is non-resonant, these maps admit formalU(1)-symmetries to all orders in perturbation theory. For Hamiltonian nearly periodic maps on exact presymplectic manifolds, we prove that the formalU(1)-symmetry gives rise to a discrete-time adiabatic invariant using a discrete-time extension of Noether’s theorem. When the unperturbedU(1)-orbits are contractible, we also find a discrete-time adiabatic invariant for mappings that are merely presymplectic, rather than Hamiltonian. As an application of the theory, we use it to develop a novel technique for geometric integration of non-canonical Hamiltonian systems on exact symplectic manifolds. 
    more » « less
  3. Abstract We develop a general compactification framework to facilitate analysis of nonautonomous ODEs where nonautonomous terms decay asymptotically. The strategy is to compactify the problem: the phase space is augmented with a bounded but open dimension and then extended at one or both ends by gluing in flow-invariant subspaces that carry autonomous dynamics of the limit systems from infinity. We derive the weakest decay conditions possible for the compactified system to be continuously differentiable on the extended phase space. This enables us to use equilibria and other compact invariant sets of the limit systems from infinity to analyze the original nonautonomous problem in the spirit of dynamical systems theory. Specifically, we prove that solutions of interest are contained in unique invariant manifolds of saddles for the limit systems when embedded in the extended phase space. The uniqueness holds in the general case, that is even if the compactification gives rise to a centre direction and the manifolds become centre or centre-stable manifolds. A wide range of problems including pullback attractors, rate-induced critical transitions (R-tipping) and nonlinear wave solutions fit naturally into our framework, and their analysis can be greatly simplified by the compactification. 
    more » « less
  4. We review the theory of weakly coupled oscillators for smooth systems. We then examine situations where application of the standard theory falls short and illustrate how it can be extended. Specific examples are given to non-smooth systems with applications to the Izhikevich neuron. We then introduce the idea of isostable reduction to explore behaviours that the weak coupling paradigm cannot explain. In an additional example, we show how bifurcations that change the stability of phase-locked solutions in a pair of identical coupled neurons can be understood using the notion of isostable reduction. This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences’. 
    more » « less
  5. Chemical organization in reaction-diffusion systems offers a strategy for the generation of materials with ordered morphologies and structural hierarchy. Periodic structures are formed by either molecules or nanoparticles. On the premise of new directing factors and materials, an emerging frontier is the design of systems in which the precipitation partners are nanoparticles and molecules. We show that solvent evaporation from a suspension of cellulose nanocrystals (CNCs) and l -(+)-tartaric acid [ l -(+)-TA] causes phase separation and precipitation, which, being coupled with a reaction/diffusion, results in rhythmic alternation of CNC-rich and l -(+)-TA–rich rings. The CNC-rich regions have a cholesteric structure, while the l -(+)-TA–rich bands are formed by radially aligned elongated bundles. The moving edge of the pattern propagates with a finite constant velocity, which enables control of periodicity by varying film preparation conditions. This work expands knowledge about self-organizing reaction-diffusion systems and offers a strategy for the design of self-organizing materials. 
    more » « less