skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite
In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.  more » « less
Award ID(s):
2122044
PAR ID:
10506917
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Polymers
Volume:
15
Issue:
20
ISSN:
2073-4360
Page Range / eLocation ID:
4080
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Barium titanate (BT) perovskite particles were surface modified by means of mechanical treatment and used as inorganic component in polyvinylidene fluoride (PVDF) based composites. The changes in electrical properties of the composite films with increasing in filler content were followed by dielectric spectroscopy, breakdown strength andD-Emeasurements. A comparison of the properties of the composites prepared with untreated and mechanically activated particles revealed that there is a significant difference in their performances at low filler concentrations (<20 wt%). Introduction of the surface modified ceramic particles into PVDF matrix led to an increase of the dielectric constant without affecting significantly the electrical breakdown strength. In contrast, when as received BT particles were used a filler, both dielectric constants and breakdown strengths of the composite films were lower than the corresponding values observed for the pure PVDF. At higher concentrations, however, the influence of pre-treatment of the filler on the effective electrical properties becomes less significant. The obtained results were discussed in terms of the pronounced crystallization of polarβandγcrystal phases of PVDF in the presence of surface modified BT fillers, which is confirmed by Raman spectroscopy. 
    more » « less
  2. Abstract Flexible nanocomposite films, with cobalt ferrite nanoparticles (CFN) as the ferromagnetic component and polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE) copolymer as the ferroelectric matrix, were fabricated using a blade coating technique. Nanocomposite films were prepared using a two-step process; the first process involves the synthesis of cobalt ferrite (CoFe2O4) nanoparticles using a sonochemical method, and then incorporation of various weight percentages (0, 2.5, 5, and 10%) of cobalt ferrite nanoparticles into the PVDF-TrFE to form nanocomposites. The ferroelectric polarβphase of PVDF-TrFE was confirmed by x-ray diffraction (XRD). Thermal studies of films showed notable improvement in the thermal properties of the nanocomposite films with the incorporation of nanoparticles. The ferroelectric properties of the pure polymer/composite films were studied, showing a significant improvement of maximum polarization upon 5wt% CFN loading in PVDF-TrFE composite films compared to the PVDF-TrFE film. The magnetic properties of as-synthesized CFN and the polymer nanocomposites were studied, showing a magnetic saturation of 53.7 emu g−1at room temperature, while 10% cobalt ferrite-(PVDF-TrFE) nanocomposite shows 27.6 emu/g. We also describe a process for fabricating high optical quality pure PVDF-TrFE and pinhole-free nanocomposite films. Finally, the mechanical studies revealed that the mechanical strength of the films increases up to 5 wt% loading of the nanoparticles in the copolymer matrix and then decreases. This signifies that the obtained films could be suited for flexible electronics. 
    more » « less
  3. The research investigates the thermal behavior of mixed systems based on natural and artificial cellulose fibers used as precursors for carbon nonwoven materials. Flax and hemp fibers were employed as natural components; they were first chemically treated to remove impurities and enriched with alpha-cellulose. The structure, chemical composition, and mechanical properties of both natural and viscose fibers were studied. It was shown that fiber properties depend on the fiber production process history; natural fibers are characterized by a high content of impurities and exhibit high strength characteristics, whereas viscose fibers have greater deformation properties. The thermal behavior of blended compositions was investigated using TGA and DSC methods across a wide range of component ratios. Carbon yield values at 1000 °C were found to be lower for blended systems containing 10–40% by weight of bast fibers, with carbon yield increasing as the quantity of natural fibers increased. Thus, the composition of the cellulose composite affects carbon yield and thermal processes in the system. Using the Kissinger method, data were obtained on the value of the activation energy of thermal decomposition for various cellulose and composite systems. It was found that natural fiber systems have three-times higher activation energy than viscose fiber systems, indicating their greater thermal stability. Blends of natural and artificial fibers combine the benefits of both precursors, enabling the deliberate regulation of thermal behavior and carbon material yield. This approach opens up prospects for the creation of functional carbon materials used in various high-tech areas, including thermal insulation. 
    more » « less
  4. Abstract In this study, we discuss the characterization and quantification of composite microstructures formed by the external field manipulation of high aspect ratio magnetic particles in an elastomeric matrix. In our prior work, we have demonstrated that the simultaneous application of electric and magnetic fields on hard magnetic particles with geometric anisotropy can create a hierarchy of structures at different length scales, which can be used to achieve a wide range of properties. We aim to characterize these hierarchical structures and relate them to final composite properties so we can achieve our ultimate goal of designing a material for a prescribed performance. The complex particle structures are formed during processing by using electric and magnetic fields, and they are then locked-in by curing the polymer matrix around the particles. The model materials used in the study are barium hexaferrite (BHF) particles and polydimethylsiloxane (PDMS) elastomer. BHF was selected for its hard magnetic properties and high geometric anisotropy. PDMS was selected for its good mechanical properties and its tunable curing kinetics. The resulting BHF-PDMS composites are magnetoactive, i.e., they will deform and actuate in response to magnetic fields. In order to investigate the resulting particle orientation, distribution and alignment and to predict the composite’s macro scale properties, we developed techniques to quantify the particle structures. The general framework we developed allows us to quantify and directly compare the microstructures created within the composites. To identify structures at the different length scales, images of the composite are taken using both optical microscopy and scanning electron microscopy. We then use ImageJ to analyze them and gather data on particle size, location, and orientation angle. The data is then exported to MATLAB, and is used to run a Minimum Spanning Tree Algorithm to classify the particle structures, and von Mises Distributions to quantify the alignment of said structures. Important findings show 1) the ability to control structure using a combination of external electric, magnetic and thermal fields; 2) that electric fields promote long range order while magnetic fields promote short-range order; and 3) the resulting hierarchical structure greatly influence bulk material properties. Manipulating particles in a composite material is technologically important because changes in microstructure can alter the properties of the bulk material. The multifield processing we investigate here can form the basis for next generation additive manufacturing platforms where desired properties are tailored locally through in-situ hierarchical control of particle arrangements. 
    more » « less
  5. null (Ed.)
    Structural health monitoring of fiber reinforced composites is an extensive field of research that aims to reduce maintenance costs through in-situ damage detection. However, the need for externally bonded sensor systems and complicated fabrication processes limit the widespread application of most current structural health monitoring techniques. This work introduces a novel multifunctional fiber reinforced composite that relies on a ferroelectric prepreg fabricated using dehydrofluorinated (DHF) polyvinylidene fluoride (PVDF), which exhibits a thermally stable piezoelectric response. The self-sensing material presented in this work requires minimal external components, as the piezoelectric sensing mechanism is fully contained within the composite. This is accomplished by fabricating a ferroelectric prepreg consisting of DHF PVDF infused woven fiberglass, which is sandwiched between woven carbon fabric layers that act as electrodes, thus forming a piezoelectric sensor fabricated with entirely structural composite materials. Notably, the sensing material is a fully distributed prepreg rather than discretely embedded sensors which enables simplified monitoring of complex structures. As the composite experiences damage under flexural and tensile loading, the internal change in strain results in a charge separation that is detectable as a voltage emission across the sample electrodes. The self-sensing capabilities of this material are explored using traditional mechanical testing techniques, showing comparable performance to common damage detection methods, all while eliminating the need for external bonding of sensors to the structure. 
    more » « less