We explore the possibility of theN-rich young proto-galaxy GN-z11, recently observed atz = 10.6 by JWST, being the result of the formation of second generation stars from pristine gas and asymptotic giant branch (AGB) ejecta in a massive globular cluster or nuclear star cluster. We show that a second generation forming out of gas polluted by the ejecta of massive AGB stars and mixed with gas of a standard composition accounts for the unusually large N/O in the GN-z11 spectrum. The timing of the evolution of massive (4–7.5 M⊙) AGBs also provides a favorable environment for the growth of a central stellar mass black hole to the AGN stage observed in GN-z11. According to our model, the progenitor system was born when the age of the Universe was ≃260 − 380 Myr, well within the bounds of the pre-reionization epoch. 
                        more » 
                        « less   
                    
                            
                            Supermassive black holes from runaway mergers and accretion in nuclear star clusters
                        
                    
    
            ABSTRACT Rapid formation of supermassive black holes occurs in dense nuclear star clusters that are initially gas-dominated. Stellar-mass black hole remnants of the most massive cluster stars sink into the core, where a massive runaway black hole forms as a consequence of combined effects of repeated mergers and Eddington-limited gas accretion. The associated gravitational wave signals of high-redshift extreme mass-ratio inspirals are a unique signature of the nuclear star cluster scenario. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10507036
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 531
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 133-136
- Size(s):
- p. 133-136
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Very massive stars (VMSs) formed via a sequence of stellar collisions in dense star clusters have been proposed as the progenitors of massive black hole seeds. VMSs could indeed collapse to form intermediate-mass black holes, which would then grow by accretion to become the supermassive black holes observed at the centers of galaxies and powering high-redshift quasars. Previous studies have investigated how different cluster initial conditions affect the formation of a VMS, including mass segregation, stellar collisions, and binaries, among others. In this study, we investigate the growth of VMSs with a new grid of Cluster Monte Carlo star cluster simulations—the most expansive to date. The simulations span a wide range of initial conditions, varying the number of stars, cluster density, stellar initial mass function (IMF), and primordial binary fraction. We find a gradual shift in the mass of the most massive collision product across the parameter space; in particular, denser clusters born with top-heavy IMFs provide strong collisional regimes that form VMSs with masses easily exceeding 1000M⊙. Our results are used to derive a fitting formula that can predict the typical mass of a VMS formed as a function of the star cluster properties. Additionally, we study the stochasticity of this process and derive a statistical distribution for the mass of the VMS formed in one of our models, recomputing the model 50 times with different initial random seeds.more » « less
- 
            Stellar Collisions in the Galactic Center: Massive Stars, Collision Remnants, and Missing Red GiantsAbstract Like most galaxies, the Milky Way harbors a supermassive black hole (SMBH) at its center, surrounded by a nuclear star cluster. In this dense star cluster, direct collisions can occur between stars before they evolve off the main sequence. Using a statistical approach, we characterize the outcomes of these stellar collisions within the inner parsec of the Galactic center (GC). Close to the SMBH, where the velocity dispersion is larger than the escape speed from a Sun-like star, collisions lead to mass loss. We find that the stellar population within 0.01 pc is halved within about a billion years because of destructive collisions. Additionally, we predict a diffuse population of peculiar low-mass stars in the GC. These stars have been divested of their outer layers in the inner 0.01 pc before migrating to larger distances from the SMBH. Between 0.01 and 0.1 pc from the SMBH, collisions can result in mergers. Our results suggest that repeated collisions between lower-mass stars can produce massive (≳10M⊙) stars, and that there may be ∼100 of them residing in this region. We provide predictions on the number of so-called G objects, dust- and gas-enshrouded stellar objects, that may result from main-sequence stellar collisions. Lastly, we comment on uncertainties in our model and possible connections between stellar collisions and the missing red giants in the GC.more » « less
- 
            Abstract We present the results of the first systematic search for spectroscopic binaries within the central 2 × 3 arcsec2around the supermassive black hole at the center of the Milky Way galaxy. This survey is based primarily on over a decade of adaptive optics-fed integral-field spectroscopy (R∼ 4000), obtained as part of the Galactic Center Orbits Initiative at Keck Observatory, and it has a limitingK’-band magnitude of 15.8, which is at least 4 mag deeper than previous spectroscopic searches for binaries at larger radii within the central nuclear star cluster. From this primary data set, over 600 new radial velocities are extracted and reported, increasing by a factor of 3 the number of such measurements. We find no significant periodic signals in our sample of 28 stars, of which 16 are massive, young (main-sequence B) stars and 12 are low-mass, old (M and K giant) stars. Using Monte Carlo simulations, we derive upper limits on the intrinsic binary star fraction for the young star population at 47% (at 95% confidence) located ∼20 mpc from the black hole. The young star binary fraction is significantly lower than that observed in the field (70%). This result is consistent with a scenario in which the central supermassive black hole drives nearby stellar binaries to merge or be disrupted, and it may have important implications for the production of gravitational waves and hypervelocity stars.more » « less
- 
            ABSTRACT We study the link between supermassive black hole growth and the stellar mass assembly of their host galaxies in the state-of-the-art Romulus suite of simulations. The cosmological simulations Romulus25 and RomulusC employ innovative recipes for the seeding, accretion, and dynamics of black holes in the field and cluster environments, respectively. We find that the black hole accretion rate traces the star formation rate among star-forming galaxies. This result holds for stellar masses between 108 and 1012 solar masses, with a very weak dependence on host halo mass or redshift. The inferred relation between accretion rate and star formation rate does not appear to depend on environment, as no difference is seen in the cluster/proto-cluster volume compared to the field. A model including the star formation rate, the black hole-to-stellar mass ratio, and the cold gas fraction can explain about 70 per cent of all variations in the black hole accretion rate among star-forming galaxies. Finally, bearing in mind the limited volume and resolution of these cosmological simulations, we find no evidence for a connection between black hole growth and galaxy mergers, on any time-scale and at any redshift. Black holes and their galaxies assemble in tandem in these simulations, regardless of the larger scale intergalactic environment, suggesting that black hole growth simply follows star formation on galactic scales.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
