skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parametric Decay of a Kinked Alfvén Wave Packet: 3D Magnetohydrodynamic Simulations
Abstract Large amplitude Alfvénic fluctuations, sometimes leading to localized inversions of the magnetic field, called switchbacks, are a common but poorly understood phenomenon in the solar wind. In particular, their origin(s), evolution, and stability within solar wind conditions are yet to be fully understood. Simulations modeling switchbacks have previously studied their stability in 2D. Here, we investigate the decay process of Alfvén wave packets via MHD simulations in 3D by characterizing the effects of system size, aspect ratio, and propagation angle on the decay rate. We show that the initial wave packet is unstable to parametric instabilities that develop compressible and Alfvénic secondary modes in the plane of, and transverse to, the initial wave packet propagation direction. The growth of transverse modes, absent in 2D simulations, increases the decay rate of the wave packet. We finally discuss the implications of our results for lifetime estimates of switchbacks and wave energy conversion in the solar wind.  more » « less
Award ID(s):
2141564
PAR ID:
10507059
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
967
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 19
Size(s):
Article No. 19
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The parametric decay instability of Alfvén waves has been widely studied, but few investigations have examined wave packets of finite size and the effect of different boundary conditions on the growth rate. In this paper, we perform a linear analysis of circular and arc-polarized wave trains and wave packets in periodic and open boundary systems in a low-βplasma. We find that both types of wave are 3–5 times more stable in open boundary conditions compared to periodic. Additionally, once the wave packet widthℓbecomes smaller than the system sizeL, the growth rate decreases nearly with a power lawγ∝ℓ/L. This study demonstrates that the stability of a pump wave cannot be separated from the laboratory settings, and that the growth rate of daughter waves depends on the conditions downstream and upstream of the pump wave and on the fraction of volume it fills. Our results can explain simulations and experiments of localized Alfvén waves. They also suggest that Alfvénic fluctuations in the solar wind, including sharp impulses known as switchbacks, can be more stable than traditional theory suggests depending on wind conditions. 
    more » « less
  2. Abstract Magnetic switchbacks are rapid high-amplitude reversals of the radial magnetic field in the solar wind that do not involve a heliospheric current sheet crossing. First seen sporadically in the 1970s in Mariner and Helios data, switchbacks were later observed by the Ulysses spacecraft beyond 1 au and have been recently discovered to be a typical component of solar wind fluctuations in the inner heliosphere by the Parker Solar Probe spacecraft. While switchbacks are now well understood to be spherically polarized Alfvén waves thanks to Parker Solar Probe observations, their formation has been an intriguing and unsolved puzzle. Here we provide a simple yet predictive theory for the formation of these magnetic reversals: the switchbacks are produced by the distortion and twisting of circularly polarized Alfvén waves by a transversely varying radial wave propagation velocity. We provide an analytic expression for the magnetic field variation, establish the necessary and sufficient conditions for the formation of switchbacks, and show that the proposed mechanism works in a realistic solar wind scenario. We also show that the theoretical predictions are in excellent agreement with observations, and the high-amplitude radial oscillations are strongly correlated with the shear of the wave propagation speed. The correlation coefficient is around 0.3–0.5 for both encounter 1 and encounter 12. The probability of this being a lucky coincidence is essentially zero withp-values below 0.1%. 
    more » « less
  3. Large-scale solar ejections are well understood, but the extent to which small-scale solar features directly influence the solar wind remains an open question, primarily due to the challenges of tracing these small-scale ejections and their impact. Here, we measure the fine-scale motions of network bright points along a coronal hole boundary in high-resolution Hαimages from the 1.6 m Goode Solar Telescope at Big Bear Solar Observatory to quantify the agitation of open flux tubes into generating Alfvénic pulses. We combine the motion, magnetic flux, and activity duration of the flux tubes to estimate the energy content carried by individual Alfvénic pulses, which is ∼1025erg, adequately higher than the energies ∼1023erg estimated for the magnetic switchbacks observed by the Parker Solar Probe (PSP). This implies the possibility that the surface-generated Alfvénic pulses could reach the solar wind with sufficient energy to generate switchbacks, even though some of then are expected to be reflected back in the stratified solar atmosphere. Alfvénic pulses further reproduce for the first time other properties of switchbacks, including the filling factor above ∼8% at granular and supergranular scales, which correspond best to the lower end of the mesoscale structure. This quantitative result for solar energy output in the form of Alfvénic pulses through magnetic funnels provides a crucial clue to the ongoing debate about the dynamic cycle of energy exchange between the Sun and the mesoscale solar wind that has been raised, but has not been adequately addressed, by PSP near-Sun observations. 
    more » « less
  4. Abstract Recent observations provided evidence that the solar chromosphere of sunspot regions is pervaded by Alfvénic waves—transverse magnetohydrodynamic (MHD) waves (Alfvén waves or kink waves). In order to systematically investigate the physical characteristics of Alfvénic waves over a wide range of periods, we analyzed the time series of line-of-sight velocity maps constructed from the H α spectral data of a small sunspot region taken by the Fast Imaging Solar Spectrograph of the Goode Solar Telescope at Big Bear. We identified each Alfvénic wave packet by examining the cross-correlation of band-filtered velocity between two points that are located a little apart presumably on the same magnetic field line. As result, we detected a total of 279 wave packets in the superpenumbral region around the sunspot and obtained their statistics of period, velocity amplitude, and propagation speed. An important finding of ours is that the detected Alfvénic waves are clearly separated into two groups: 3-minute period (<7 minutes) waves and 10-minute period (>7 minutes) waves. We propose two tales on the origin of Alfvénic waves in the chromosphere; the 3-minute Alfvénic waves are excited by the upward-propagating slow waves in the chromosphere through the slow-to-Alfvénic mode conversion, and the 10-minute Alfvénic waves represent the chromospheric manifestation of the kink waves driven by convective motions in the photosphere. 
    more » « less
  5. Abstract During its 10th orbit around the Sun, the Parker Solar Probe sampled two intervals where the local Alfvén speed exceeded the solar wind speed, lasting more than 10 hours in total. In this paper, we analyze the turbulence and wave properties during these periods. The turbulence is observed to be Alfvénic and unbalanced, dominated by outward-propagating modes. The power spectrum of the outward-propagating Elsässer z + mode steepens at high frequencies while that of the inward-propagating z − mode flattens. The observed Elsässer spectra can be explained by the nearly incompressible (NI) MHD turbulence model with both 2D and Alfvénic components. The modeling results show that the z + spectra are dominated by the NI/slab component, and the 2D component mainly affects the z − spectra at low frequencies. An MHD wave decomposition based on an isothermal closure suggests that outward-propagating Alfvén and fast magnetosonic wave modes are prevalent in the two sub-Alfvénic intervals, while the slow magnetosonic modes dominate the super-Alfvénic interval in between. The slow modes occur where the wavevector is nearly perpendicular to the local mean magnetic field, corresponding to nonpropagating pressure-balanced structures. The alternating forward and backward slow modes may also be features of magnetic reconnection in the near-Sun heliospheric current sheet. 
    more » « less