skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generic Beauville’s Conjecture
Abstract Let$$\alpha \colon X \to Y$$be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under$$\alpha $$is semistable if the genus ofYis at least$$1$$and stable if the genus ofYis at least$$2$$. We prove this conjecture if the map$$\alpha $$is general in any component of the Hurwitz space of covers of an arbitrary smooth curveY.  more » « less
Award ID(s):
2200684 2200655 2200641
PAR ID:
10507126
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
12
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Given a family$$\mathcal{F}$$of bipartite graphs, theZarankiewicz number$$z(m,n,\mathcal{F})$$is the maximum number of edges in an$$m$$by$$n$$bipartite graph$$G$$that does not contain any member of$$\mathcal{F}$$as a subgraph (such$$G$$is called$$\mathcal{F}$$-free). For$$1\leq \beta \lt \alpha \lt 2$$, a family$$\mathcal{F}$$of bipartite graphs is$$(\alpha,\beta )$$-smoothif for some$$\rho \gt 0$$and every$$m\leq n$$,$$z(m,n,\mathcal{F})=\rho m n^{\alpha -1}+O(n^\beta )$$. Motivated by their work on a conjecture of Erdős and Simonovits on compactness and a classic result of Andrásfai, Erdős and Sós, Allen, Keevash, Sudakov and Verstraëte proved that for any$$(\alpha,\beta )$$-smooth family$$\mathcal{F}$$, there exists$$k_0$$such that for all odd$$k\geq k_0$$and sufficiently large$$n$$, any$$n$$-vertex$$\mathcal{F}\cup \{C_k\}$$-free graph with minimum degree at least$$\rho (\frac{2n}{5}+o(n))^{\alpha -1}$$is bipartite. In this paper, we strengthen their result by showing that for every real$$\delta \gt 0$$, there exists$$k_0$$such that for all odd$$k\geq k_0$$and sufficiently large$$n$$, any$$n$$-vertex$$\mathcal{F}\cup \{C_k\}$$-free graph with minimum degree at least$$\delta n^{\alpha -1}$$is bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the families$$\mathcal{F}$$consisting of the single graph$$K_{s,t}$$when$$t\gg s$$. We also prove an analogous result for$$C_{2\ell }$$-free graphs for every$$\ell \geq 2$$, which complements a result of Keevash, Sudakov and Verstraëte. 
    more » « less
  2. Abstract We consider manifold-knot pairs$$(Y,K)$$, whereYis a homology 3-sphere that bounds a homology 4-ball. We show that the minimum genus of a PL surface$$\Sigma $$in a homology ballX, such that$$\partial (X, \Sigma ) = (Y, K)$$can be arbitrarily large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from$$(Y, K)$$to any knot in$$S^3$$can be arbitrarily large. The proof relies on Heegaard Floer homology. 
    more » « less
  3. Abstract This paper contains a method to prove the existence of smooth curves in positive characteristic whose Jacobians have unusual Newton polygons. Using this method, I give a new proof that there exist supersingular curves of genus$$4$$in every prime characteristic. More generally, the main result of the paper is that, for every$$g \geq 4$$and primep, every Newton polygon whosep-rank is at least$$g-4$$occurs for a smooth curve of genusgin characteristicp. In addition, this method resolves some cases of Oort’s conjecture about Newton polygons of curves. 
    more » « less
  4. Abstract What proportion of integers$$n \leq N$$may be expressed as$$x^2 + dy^2$$for some$$d \leq \Delta $$, with$$x,y$$integers? Writing$$\Delta = (\log N)^{\log 2} 2^{\alpha \sqrt {\log \log N}}$$for some$$\alpha \in (-\infty , \infty )$$, we show that the answer is$$\Phi (\alpha ) + o(1)$$, where$$\Phi $$is the Gaussian distribution function$$\Phi (\alpha ) = \frac {1}{\sqrt {2\pi }} \int ^{\alpha }_{-\infty } e^{-x^2/2} dx$$. A consequence of this is a phase transition: Almost none of the integers$$n \leq N$$can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 - \varepsilon }$$, but almost all of them can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 + \varepsilon}\kern-1.5pt$$. 
    more » « less
  5. Abstract For$$g\ge 2$$and$$n\ge 0$$, let$$\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$$denote the complex moduli stack ofn-marked smooth hyperelliptic curves of genusg. A normal crossings compactification of this space is provided by the theory of pointed admissible$$\mathbb {Z}/2\mathbb {Z}$$-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of$$\mathcal {H}_{g, n}$$. Using this graph complex, we give a sum-over-graphs formula for the$$S_n$$-equivariant weight zero compactly supported Euler characteristic of$$\mathcal {H}_{g, n}$$. This formula allows for the computer-aided calculation, for each$$g\le 7$$, of the generating function$$\mathsf {h}_g$$for these equivariant Euler characteristics for alln. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissibleG-covers of genus zero curves, whenGis abelian, as a symmetric$$\Delta $$-complex. We use these complexes to generalize our formula for$$\mathsf {h}_g$$to moduli spaces ofn-pointed smooth abelian covers of genus zero curves. 
    more » « less