skip to main content


This content will become publicly available on December 15, 2024

Title: Online Hierarchical Multi-label Classification
Existing approaches for multi-label classification are trained offline, missing the opportunity to adapt to new data instances as they become available. To address this gap, an online multi-label classification method was proposed recently, to learn from data instances sequentially. In this work, we focus on multi-label classification tasks, in which the labels are organized in a hierarchy. We formulate online hierarchical multi-labeled classification as an online optimization task that jointly learns individual label predictors and a label threshold, and propose a novel hierarchy constraint to penalize predictions that are inconsistent with the label hierarchy structure. Experimental results on three benchmark datasets show that the proposed approach outperforms online multi-label classification methods, and achieves comparable to, or even better performance than offline hierarchical classification frameworks with respect to hierarchical evaluation metrics.  more » « less
Award ID(s):
1737443
NSF-PAR ID:
10507193
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE International Conference on Big Data
Date Published:
ISBN:
979-8-3503-2445-7
Page Range / eLocation ID:
5346-5355
Subject(s) / Keyword(s):
Hierarchical classification online learning learning with constrains
Format(s):
Medium: X
Location:
Sorrento, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent years have witnessed increasing concerns towards unfair decisions made by machine learning algorithms. To improve fairness in model decisions, various fairness notions have been proposed and many fairness-aware methods are developed. However, most of existing definitions and methods focus only on single-label classification. Fairness for multi-label classification, where each instance is associated with more than one labels, is still yet to establish. To fill this gap, we study fairness-aware multi-label classification in this paper. We start by extending Demographic Parity (DP) and Equalized Opportunity (EOp), two popular fairness notions, to multi-label classification scenarios. Through a systematic study, we show that on multi-label data, because of unevenly distributed labels, EOp usually fails to construct a reliable estimate on labels with few instances. We then propose a new framework named Similarity s-induced Fairness (sγ -SimFair). This new framework utilizes data that have similar labels when estimating fairness on a particular label group for better stability, and can unify DP and EOp. Theoretical analysis and experimental results on real-world datasets together demonstrate the advantage of sγ -SimFair over existing methods on multi-label classification tasks.

     
    more » « less
  2. null (Ed.)
    Multi-label text classification refers to the problem of assigning each given document its most relevant labels from a label set. Commonly, the metadata of the given documents and the hierarchy of the labels are available in real-world applications. However, most existing studies focus on only modeling the text information, with a few attempts to utilize either metadata or hierarchy signals, but not both of them. In this paper, we bridge the gap by formalizing the problem of metadata-aware text classification in a large label hierarchy (e.g., with tens of thousands of labels). To address this problem, we present the MATCH solution—an end-to-end framework that leverages both metadata and hierarchy information. To incorporate metadata, we pre-train the embeddings of text and metadata in the same space and also leverage the fully-connected attentions to capture the interrelations between them. To leverage the label hierarchy, we propose different ways to regularize the parameters and output probability of each child label by its parents. Extensive experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH over the state-of-the-art deep learning baselines. 
    more » « less
  3. While existing hierarchical text classification (HTC) methods attempt to capture label hierarchies for model training, they either make local decisions regarding each label or completely ignore the hierarchy information during inference. To solve the mismatch between training and inference as well as modeling label dependencies in a more principled way, we formulate HTC as a Markov decision process and propose to learn a Label Assignment Policy via deep reinforcement learning to determine where to place an object and when to stop the assignment process. The proposed method, HiLAP, explores the hierarchy during both training and inference time in a consistent manner and makes inter-dependent decisions. As a general framework, HiLAP can incorporate different neural encoders as base models for end-to-end training. Experiments on five public datasets and four base models show that HiLAP yields an average improvement of 33.4% in Macro-F1 over flat classifiers and outperforms state-of-the-art HTC methods by a large margin. 
    more » « less
  4. Machine learning models for hierarchical multilabel classification (HMC) typically achieve low accuracy. This is because such models need not only predict multiple labels for each data instance, but also ensure that predicted labels conform to a given hierarchical structure. Existing state-of the-art strategies for HMC decouple the learning process from ensuring that predicted labels reside in a path of the hierarchy, thus inevitably degrading the overall classification accuracy. To address this limitation, we propose a novel loss function, which enables a model to encode both a global perspective of the class hierarchy, as well local class-relationships in adjacent hierarchical levels, to ensure that predictions align with the class hierarchy, both during training and testing. We demonstrate the superiority of the proposed approach against multiple state-of-the-art methods for HMC on 20 real-world datasets. 
    more » « less
  5. null (Ed.)
    Categorizing documents into a given label hierarchy is intuitively appealing due to the ubiquity of hierarchical topic structures in massive text corpora. Although related studies have achieved satisfying performance in fully supervised hierarchical document classification, they usually require massive human-annotated training data and only utilize text information. However, in many domains, (1) annotations are quite expensive where very few training samples can be acquired; (2) documents are accompanied by metadata information. Hence, this paper studies how to integrate the label hierarchy, metadata, and text signals for document categorization under weak supervision. We develop HiMeCat, an embedding-based generative framework for our task. Specifically, we propose a novel joint representation learning module that allows simultaneous modeling of category dependencies, metadata information and textual semantics, and we introduce a data augmentation module that hierarchically synthesizes training documents to complement the original, small-scale training set. Our experiments demonstrate a consistent improvement of HiMeCat over competitive baselines and validate the contribution of our representation learning and data augmentation modules. 
    more » « less