Abstract Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP’s influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality and multiplexing. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into structures to control cell and tissue shape and behavior.
more »
« less
Highly flexible PEG-LifeAct constructs act as tunable biomimetic actin crosslinkers
Bio-synthetic telechelics consisting of polyethylene glycol chains end-capped with the actin-binding peptide, LifeAct, are effective F-actin crosslinkers with contour length dependent control over network mechanics and structure.
more »
« less
- PAR ID:
- 10507267
- Publisher / Repository:
- The Royal Society of Chemistry
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 20
- Issue:
- 5
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 971 to 977
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantitative volumetric assessment of filamentous actin (F‐actin) fibers remains challenging due to their interconnected nature, leading researchers to utilize threshold‐based or qualitative measurement methods with poor reproducibility. Herein, a novel machine learning‐based methodology is introduced for accurate quantification and reconstruction of nuclei‐associated F‐actin. Utilizing a convolutional neural network (CNN), actin filaments and nuclei from 3D confocal microscopy images are segmented and then each fiber is reconstructed by connecting intersecting contours on cross‐sectional slices. This allows measurement of the total number of actin filaments and individual actin filament length and volume in a reproducible fashion. Focusing on the role of F‐actin in supporting nucleocytoskeletal connectivity, apical F‐actin, basal F‐actin, and nuclear architecture in mesenchymal stem cells (MSCs) are quantified following the disruption of the linker of nucleoskeleton and cytoskeleton (LINC) complexes. Disabling LINC in MSCs generates F‐actin disorganization at the nuclear envelope characterized by shorter length and volume of actin fibers contributing a less elongated nuclear shape. The findings not only present a new tool for mechanobiology but introduce a novel pipeline for developing realistic computational models based on quantitative measures of F‐actin.more » « less
-
Cellular form and function are controlled by the assembly and stability of actin cytoskeletal structures—but disassembling/pruning these structures is equally essential for the plasticity and remodeling that underlie behavioral adaptations. Importantly, the mechanisms of actin assembly have been well-defined—including that it is driven by actin’s polymerization into filaments (F-actin) and then often bundling by crosslinking proteins into stable higher-order structures. In contrast, it remains less clear how these stable bundled F-actin structures are rapidly disassembled. We now uncover mechanisms that rapidly and extensively disassemble bundled F-actin. Using biochemical, structural, and imaging assays with purified proteins, we show that F-actin bundled with one of the most prominent crosslinkers, fascin, is extensively disassembled by Mical, the F-actin disassembly enzyme. Furthermore, the product of this Mical effect, Mical-oxidized actin, is poorly bundled by fascin, thereby further amplifying Mical’s disassembly effects on bundled F-actin. Moreover, another critical F-actin regulator, cofilin, also affects fascin-bundled filaments, but we find herein that it synergizes with Mical to dramatically amplify its disassembly of bundled F-actin compared to the sum of their individual effects. Genetic and high-resolution cellular assays reveal that Mical also counteracts crosslinking proteins/bundled F-actin in vivo to control cellular extension, axon guidance, and Semaphorin/Plexin cell-cell repulsion. Yet, our results also support the idea that fascin-bundling serves to dampen Mical’s F-actin disassembly in vitro and in vivo—and that physiologically relevant cellular remodeling requires a fine-tuned interplay between the factors that build bundled F-actin networks and those that disassemble them.more » « less
-
Liquid-like protein condensates perform diverse physiological functions. Previous work showed that VASP, a processive actin polymerase, forms condensates that polymerize and bundle actin. To minimize their curvature, filaments accumulated at the inner condensate surface, ultimately deforming the condensate into a rod-like shape, filled with a bundle of parallel filaments. Here we show that this behavior does not require proteins with specific polymerase activity. Specifically, we found that condensates composed of Lamellipodin, a protein that binds actin but is not an actin polymerase, were also capable of polymerizing and bundling actin filaments. To probe the minimum requirements for condensate-mediated actin bundling, we developed an agent-based computational model. Guided by its predictions, we hypothesized that any condensate-forming protein that binds actin could bundle filaments through multivalent crosslinking. To test this idea, we added an actin-binding motif to Eps15, a condensate-forming protein that does not normally bind actin. The resulting chimera formed condensates that drove efficient actin polymerization and bundling. Collectively, these findings broaden the family of proteins that could organize cytoskeletal filaments to include any actin-binding protein that participates in protein condensation.more » « less
-
Mical family enzymes are unusual actin regulators that prime filaments (F-actin) for disassembly via the site-specific oxidation of M44/M47. Filamentous actin acts as a substrate of Mical enzymes, as well as an activator of their NADPH oxidase activity, which leads to hydrogen peroxide generation. Mical enzymes are required for cytokinesis, muscle and heart development, dendritic pruning, and axonal guidance, among other processes. Thus, it is critical to understand how this family of actin regulators functions in different cell types. Vertebrates express six actin isoforms in a cell-specific manner, but MICALs’ impact on their intrinsic properties has never been systematically investigated. Our data reveal the differences in the intrinsic dynamics of Mical-oxidized actin isoforms. Furthermore, our results connect the intrinsic dynamics of actin isoforms and their redox state with the patterns of hydrogen peroxide (H2O2) generation by MICALs. We documented that the differential properties of actin isoforms translate into the distinct patterns of hydrogen peroxide generation in Mical/NADPH-containing systems. Moreover, our results establish a conceptual link between actin stabilization by interacting factors and its ability to activate MICALs’ NADPH oxidase activity. Altogether, our results suggest that the regulatory impact of MICALs may differ depending on the isoform-related identities of local actin networks.more » « less
An official website of the United States government

