Conductive homoepitaxial Si-doped β-Ga2O3 films were fabricated by pulsed laser deposition with an as-deposited 2323 S cm−1 conductivity (resistivity = 4.3 × 10−4 Ω-cm, carrier concentration = 2.24 × 1020 cm−3, mobility = 64.5 cm2 V−1 s−1, and electrical activation efficiency = 77%). High quality homoepitaxial films deposited on commercial (010) Fe-compensated β-Ga2O substrates were determined by high-resolution transmission electron microscopy and x-ray diffraction. The β-Ga2O3 films have ∼70% transparency from 3.7 eV (335 nm) to 0.56 eV (2214 nm). The combination of high conductivity and transparency offers promise for numerous ultrawide bandgap electronics and optoelectronic applications.
more »
« less
Low-temperature growth of Al-doped ZnO by atomic layer deposition for plasmonics
Transparent conducting oxides, such as Ga-doped ZnO (GZO) and Al-doped ZnO (AZO) are attractive materials for high-performance plasmonic devices operating at telecommunication wavelengths. In this contribution, we compare the growth of epsilon-near-zero GZO and AZO films on sapphire by two different deposition techniques: molecular beam epitaxy (MBE) and atomic layer deposition (ALD). For MBE of GZO, a multiple buffer consisted of a high-temperature MgO layer, a low-temperature ZnO, followed by a high-temperature ZnO layer is employed to assure the crystalline quality of the GZO film. By controlling the growth parameters, including Ga doping level, VI/II ratio, substrate temperature, we are able to produce GZO films at 350 °C with electron mobility between 30 and 50 cm2/V.s, electron concentration up to 7×1020 cm-3, and resistivity down to 2.5×10-4 Ω.cm. For ALD of AZO, without using any buffer, by reducing the Al pulse duration, we are able to grow the AZO films under a large ratio of Al to Zn pulses of 1:6, which improves the activation of Al as an effective dopant. Hence AZO films with electron concentration above 7×1020 cm-3, electron mobility between 10 and 20 cm2/V.s, and resistivity below 6×10-4 Ω.cm have been obtained at 250 °C. The corresponding epsilon-near-zero point in the ALD-grown material was tuned down to 1470 nm. Our data indicate that the ALD method provides a low-temperature route to plasmonic TCOs for telecommunication wavelength range. Effect of electron mobility on optical loss and, therefore, plasmonic figure of merit is discussed.
more »
« less
- Award ID(s):
- 1808928
- PAR ID:
- 10507319
- Publisher / Repository:
- Proceedings Volume 11281, Oxide-based Materials and Devices XI
- Date Published:
- Format(s):
- Medium: X
- Location:
- San Francisco, VA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The thermal stability of n/n + β -Ga 2 O 3 epitaxial layer/substrate structures with sputtered ITO on both sides to act as rectifying contacts on the lightly doped layer and Ohmic on the heavily doped substrate is reported. The resistivity of the ITO deposited separately on Si decreased from 1.83 × 10 −3 Ω.cm as-deposited to 3.6 × 10 −4 Ω.cm after 300 °C anneal, with only minor reductions at higher temperatures (2.8 × 10 −4 Ω.cm after 600 °C anneals). The Schottky barrier height also decreased with annealing, from 0.98 eV in the as-deposited samples to 0.85 eV after 500 °C annealing. The reverse breakdown voltage exhibited a negative temperature coefficient of −0.46 V.C −1 up to an annealing temperature of 400 °C and degraded faster at higher temperatures. Transmission Electron Microscopy showed significant reaction at the ITO and Ga 2 O 3 interface above 300 °C, with a very degraded contact stack after annealing at 500 °C.more » « less
-
This article reviews the process-structure-property relationship in doped ZnO thin films via atomic layer deposition (ALD). ALD is an important manufacturing-scalable, layer-by-layer, thin film deposition process that precisely controls dopant type and concentration at the nanoscale. ZnO is an important technological material, which can be doped to modulate structure and composition to tailor a wide variety of optical and electronic properties. ALD doped ZnO is viewed as a transparent conducting oxide for application in solar cells, flexible transparent electronics, and light-emitting diodes. To date, there are 22 elements that have been reported as dopants in ZnO via ALD. This article studies the underlying trends across dopants and establishes generalized relationships for (1) the role of ALD process parameters, (2) the impact of these parameters on the structure of the ZnO matrix, and (3) the impact of dopants on the optical and electrical properties. The article ends with a brief discussion on the limitations of the ALD-based doping scheme, knowledge gaps in the compositional maps, and a perspective on the future of ALD doped ZnO films.more » « less
-
Major technological breakthroughs are often driven by advancements in materials research, and optics is no different. Over the last few years, near-zero-index (NZI) materials have triggered significant interest owing to their exceptional tunability of optical properties and enhanced light-matter interaction, leading to several demonstrations of compact, energy-efficient, and dynamic nanophotonic devices. Many of these devices have relied on transparent conducting oxides (TCOs) as a dynamic layer, as these materials exhibit a near-zero-index at telecommunication wavelengths. Among a wide range of techniques employed for the deposition of TCOs, atomic layer deposition (ALD) offers advantages such as conformality, scalability, and low substrate temperature. However, the ALD process often results in films with poor optical quality, due to low doping efficiencies at high (>1020cm−3) doping levels. In this work, we demonstrate a modified ALD process to deposit TCOs, taking Al:ZnO as an example, which results in an increase in doping efficiency from 13% to 54%. Moving away from surface saturation for the dopant (aluminum) precursor, the modified ALD process results in a more uniform distribution of dopants (Al) throughout the film, yielding highly conductive (2.8×10−4Ω-cm) AZO films with crossover wavelengths as low as 1320nm and 1370nm on sapphire and silicon substrates, respectively.more » « less
-
The development of high performance wide-bandgap AlGaN channel transistors with high current densities and reduced Ohmic losses necessitates extremely highly doped, high Al content AlGaN epilayers for regrown source/drain contact regions. In this work, we demonstrate the achievement of semi-metallic conductivity in silicon (Si) doped N-polar Al0.6Ga0.4N grown on C-face 4H-SiC substrates by molecular beam epitaxy. Under optimized conditions, the AlGaN epilayer shows smooth surface morphology and a narrow photoluminescence spectral linewidth, without the presence of any secondary peaks. A favorable growth window is identified wherein the free electron concentration reaches as high as ∼1.8 × 1020 cm−3 as obtained from Hall measurements, with a high mobility of 34 cm2/V·s, leading to a room temperature resistivity of only 1 mΩ·cm. Temperature-dependent Hall measurements show that the electron concentration, mobility, and sheet resistance do not depend on temperature, clearly indicating dopant Mott transition to a semi-metallic state, wherein the activation energy (Ea) falls to 0 meV at this high value of Si doping for the AlGaN films. This achievement of semi-metallic conductivity in Si doped N-polar high Al content AlGaN is instrumental for advancing ultrawide bandgap electronic and optoelectronic devices.more » « less
An official website of the United States government
