skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-temperature growth of Al-doped ZnO by atomic layer deposition for plasmonics
Transparent conducting oxides, such as Ga-doped ZnO (GZO) and Al-doped ZnO (AZO) are attractive materials for high-performance plasmonic devices operating at telecommunication wavelengths. In this contribution, we compare the growth of epsilon-near-zero GZO and AZO films on sapphire by two different deposition techniques: molecular beam epitaxy (MBE) and atomic layer deposition (ALD). For MBE of GZO, a multiple buffer consisted of a high-temperature MgO layer, a low-temperature ZnO, followed by a high-temperature ZnO layer is employed to assure the crystalline quality of the GZO film. By controlling the growth parameters, including Ga doping level, VI/II ratio, substrate temperature, we are able to produce GZO films at 350 °C with electron mobility between 30 and 50 cm2/V.s, electron concentration up to 7×1020 cm-3, and resistivity down to 2.5×10-4 Ω.cm. For ALD of AZO, without using any buffer, by reducing the Al pulse duration, we are able to grow the AZO films under a large ratio of Al to Zn pulses of 1:6, which improves the activation of Al as an effective dopant. Hence AZO films with electron concentration above 7×1020 cm-3, electron mobility between 10 and 20 cm2/V.s, and resistivity below 6×10-4 Ω.cm have been obtained at 250 °C. The corresponding epsilon-near-zero point in the ALD-grown material was tuned down to 1470 nm. Our data indicate that the ALD method provides a low-temperature route to plasmonic TCOs for telecommunication wavelength range. Effect of electron mobility on optical loss and, therefore, plasmonic figure of merit is discussed.  more » « less
Award ID(s):
1808928
PAR ID:
10507319
Author(s) / Creator(s):
Publisher / Repository:
Proceedings Volume 11281, Oxide-based Materials and Devices XI
Date Published:
Format(s):
Medium: X
Location:
San Francisco, VA
Sponsoring Org:
National Science Foundation
More Like this
  1. Conductive homoepitaxial Si-doped β-Ga2O3 films were fabricated by pulsed laser deposition with an as-deposited 2323 S cm−1 conductivity (resistivity = 4.3 × 10−4 Ω-cm, carrier concentration = 2.24 × 1020 cm−3, mobility = 64.5 cm2 V−1 s−1, and electrical activation efficiency = 77%). High quality homoepitaxial films deposited on commercial (010) Fe-compensated β-Ga2O substrates were determined by high-resolution transmission electron microscopy and x-ray diffraction. The β-Ga2O3 films have ∼70% transparency from 3.7 eV (335 nm) to 0.56 eV (2214 nm). The combination of high conductivity and transparency offers promise for numerous ultrawide bandgap electronics and optoelectronic applications. 
    more » « less
  2. The thermal stability of n/n + β -Ga 2 O 3 epitaxial layer/substrate structures with sputtered ITO on both sides to act as rectifying contacts on the lightly doped layer and Ohmic on the heavily doped substrate is reported. The resistivity of the ITO deposited separately on Si decreased from 1.83 × 10 −3 Ω.cm as-deposited to 3.6 × 10 −4 Ω.cm after 300 °C anneal, with only minor reductions at higher temperatures (2.8 × 10 −4 Ω.cm after 600 °C anneals). The Schottky barrier height also decreased with annealing, from 0.98 eV in the as-deposited samples to 0.85 eV after 500 °C annealing. The reverse breakdown voltage exhibited a negative temperature coefficient of −0.46 V.C −1 up to an annealing temperature of 400 °C and degraded faster at higher temperatures. Transmission Electron Microscopy showed significant reaction at the ITO and Ga 2 O 3 interface above 300 °C, with a very degraded contact stack after annealing at 500 °C. 
    more » « less
  3. This article reviews the process-structure-property relationship in doped ZnO thin films via atomic layer deposition (ALD). ALD is an important manufacturing-scalable, layer-by-layer, thin film deposition process that precisely controls dopant type and concentration at the nanoscale. ZnO is an important technological material, which can be doped to modulate structure and composition to tailor a wide variety of optical and electronic properties. ALD doped ZnO is viewed as a transparent conducting oxide for application in solar cells, flexible transparent electronics, and light-emitting diodes. To date, there are 22 elements that have been reported as dopants in ZnO via ALD. This article studies the underlying trends across dopants and establishes generalized relationships for (1) the role of ALD process parameters, (2) the impact of these parameters on the structure of the ZnO matrix, and (3) the impact of dopants on the optical and electrical properties. The article ends with a brief discussion on the limitations of the ALD-based doping scheme, knowledge gaps in the compositional maps, and a perspective on the future of ALD doped ZnO films. 
    more » « less
  4. Major technological breakthroughs are often driven by advancements in materials research, and optics is no different. Over the last few years, near-zero-index (NZI) materials have triggered significant interest owing to their exceptional tunability of optical properties and enhanced light-matter interaction, leading to several demonstrations of compact, energy-efficient, and dynamic nanophotonic devices. Many of these devices have relied on transparent conducting oxides (TCOs) as a dynamic layer, as these materials exhibit a near-zero-index at telecommunication wavelengths. Among a wide range of techniques employed for the deposition of TCOs, atomic layer deposition (ALD) offers advantages such as conformality, scalability, and low substrate temperature. However, the ALD process often results in films with poor optical quality, due to low doping efficiencies at high (>1020cm−3) doping levels. In this work, we demonstrate a modified ALD process to deposit TCOs, taking Al:ZnO as an example, which results in an increase in doping efficiency from 13% to 54%. Moving away from surface saturation for the dopant (aluminum) precursor, the modified ALD process results in a more uniform distribution of dopants (Al) throughout the film, yielding highly conductive (2.8×10−4Ω-cm) AZO films with crossover wavelengths as low as 1320nm and 1370nm on sapphire and silicon substrates, respectively. 
    more » « less
  5. Thin (40–150 nm), highly doped n+ (1019–1020 cm−3) Ga2O3 layers deposited using pulsed laser deposition (PLD) were incorporated into Ti/Au ohmic contacts on (001) and (010) β-Ga2O3 substrates with carrier concentrations between 2.5 and 5.1 × 1018 cm−3. Specific contact resistivity values were calculated for contact structures both without and with a PLD layer having different thicknesses up to 150 nm. With the exception of a 40 nm PLD layer on the (001) substrate, the specific contact resistivity values decreased with increasing PLD layer thickness: up to 8× on (001) Ga2O3 and up to 16× on (010) Ga2O3 compared with samples without a PLD layer. The lowest average specific contact resistivities were achieved with 150 nm PLD layers: 3.48 × 10−5 Ω cm2 on (001) Ga2O3 and 4.79 × 10−5 Ω cm2 on (010) Ga2O3. Cross-sectional transmission electron microscopy images revealed differences in the microstructure and morphology of the PLD layers on the different substrate orientations. This study describes a low-temperature process that could be used to reduce the contact resistance in Ga2O3 devices. 
    more » « less