A new growth approach, based on the hot-wall metalorganic chemical vapor deposition concept, is developed for high-quality homoepitaxial growth of Si-doped single-crystalline β-Ga2O3 layers on (010)-oriented native substrates. Substrate annealing in argon atmosphere for 1 min at temperatures below 600 °C is proposed for the formation of epi-ready surfaces as a cost-effective alternative to the traditionally employed annealing process in oxygen-containing atmosphere with a time duration of 1 h at about 1000 °C. It is shown that the on-axis rocking curve widths exhibit anisotropic dependence on the azimuth angle with minima for in-plane direction parallel to the [001] and maximum for the [100] for both substrate and layer. The homoepitaxial layers are demonstrated to have excellent structural properties with a β-Ga2O3(020) rocking curve full-widths at half-maximum as low as 11 arc sec, which is lower than the corresponding one for the substrates (19 arc sec), even for highly Si-doped (low 1019 cm−3 range) layers. Furthermore, the structural anisotropy in the layer is substantially reduced with respect to the substrate. Very smooth surface morphology of the epilayers with a root mean square roughness value of 0.6 nm over a 5 × 5 μm2 area is achieved along with a high electron mobility of 69 cm2 V−1 s−1 at a free carrier concentration n=1.9×1019 cm−3. These values compare well with state-of-the-art parameters reported in the literature for β-Ga2O3(010) homoepitaxial layers with respective Si doping levels. Thermal conductivity of 17.4 Wm−1K−1 is determined along the [010] direction for the homoepitaxial layers at 300 K, which approaches the respective value of bulk crystal (20.6 Wm−1K−1). This result is explained by a weak boundary effect and a low dislocation density in the homoepitaxial layers. 
                        more » 
                        « less   
                    
                            
                            Ohmic contact structures on β -Ga2O3 with n+ β -Ga2O3 pulsed laser deposition layers
                        
                    
    
            Thin (40–150 nm), highly doped n+ (1019–1020 cm−3) Ga2O3 layers deposited using pulsed laser deposition (PLD) were incorporated into Ti/Au ohmic contacts on (001) and (010) β-Ga2O3 substrates with carrier concentrations between 2.5 and 5.1 × 1018 cm−3. Specific contact resistivity values were calculated for contact structures both without and with a PLD layer having different thicknesses up to 150 nm. With the exception of a 40 nm PLD layer on the (001) substrate, the specific contact resistivity values decreased with increasing PLD layer thickness: up to 8× on (001) Ga2O3 and up to 16× on (010) Ga2O3 compared with samples without a PLD layer. The lowest average specific contact resistivities were achieved with 150 nm PLD layers: 3.48 × 10−5 Ω cm2 on (001) Ga2O3 and 4.79 × 10−5 Ω cm2 on (010) Ga2O3. Cross-sectional transmission electron microscopy images revealed differences in the microstructure and morphology of the PLD layers on the different substrate orientations. This study describes a low-temperature process that could be used to reduce the contact resistance in Ga2O3 devices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1827745
- PAR ID:
- 10523785
- Publisher / Repository:
- AVS
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology B
- Volume:
- 41
- Issue:
- 3
- ISSN:
- 2166-2746
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Conductive homoepitaxial Si-doped β-Ga2O3 films were fabricated by pulsed laser deposition with an as-deposited 2323 S cm−1 conductivity (resistivity = 4.3 × 10−4 Ω-cm, carrier concentration = 2.24 × 1020 cm−3, mobility = 64.5 cm2 V−1 s−1, and electrical activation efficiency = 77%). High quality homoepitaxial films deposited on commercial (010) Fe-compensated β-Ga2O substrates were determined by high-resolution transmission electron microscopy and x-ray diffraction. The β-Ga2O3 films have ∼70% transparency from 3.7 eV (335 nm) to 0.56 eV (2214 nm). The combination of high conductivity and transparency offers promise for numerous ultrawide bandgap electronics and optoelectronic applications.more » « less
- 
            Optimizing thermal anneals of Si-implanted β-Ga2O3 is critical for low resistance contacts and selective area doping. We report the impact of annealing ambient, temperature, and time on the activation of room temperature ion-implanted Si in β-Ga2O3 at concentrations from 5 × 1018 to 1 × 1020 cm−3, demonstrating full activation (>80% activation, mobilities >70 cm2/V s) with contact resistances below 0.29 Ω mm. Homoepitaxial β-Ga2O3 films, grown by plasma-assisted molecular beam epitaxy on Fe-doped (010) substrates, were implanted at multiple energies to yield 100 nm box profiles of 5 × 1018, 5 × 1019, and 1 × 1020 cm−3. Anneals were performed in an ultra-high vacuum-compatible quartz furnace at 1 bar with well-controlled gas compositions. To maintain β-Ga2O3 stability, pO2 must be greater than 10−9 bar. Anneals up to pO2 = 1 bar achieve full activation at 5 × 1018 cm−3, while 5 × 1019 cm−3 must be annealed with pO2 ≤ 10−4 bar, and 1 × 1020 cm−3 requires pO2 < 10−6 bar. Water vapor prevents activation and must be maintained below 10−8 bar. Activation is achieved for anneal temperatures as low as 850 °C with mobility increasing with anneal temperatures up to 1050 °C, though Si diffusion has been reported above 950 °C. At 950 °C, activation is maximized between 5 and 20 min with longer times resulting in decreased carrier activation (over-annealing). This over-annealing is significant for concentrations above 5 × 1019 cm−3 and occurs rapidly at 1 × 1020 cm−3. Rutherford backscattering spectrometry (channeling) suggests that damage recovery is seeded from remnant aligned β-Ga2O3 that remains after implantation; this conclusion is also supported by scanning transmission electron microscopy showing retention of the β-phase with inclusions that resemble the γ-phase.more » « less
- 
            This work demonstrates the advantage of carrying out silicon ion (Si+) implantation at high temperatures for forming controlled heavily doped regions in gallium oxide. Room temperature (RT, 25 °C) and high temperature (HT, 600 °C) Si implants were carried out into MBE grown (010) β-Ga2O3 films to form ∼350 nm deep Si-doped layers with average concentrations up to ∼1.2 × 1020 cm−3. For such high concentrations, the RT sample was too resistive for measurement, but the HT samples had 82.1% Si dopant activation efficiency with a high sheet electron concentration of 3.3 × 1015 cm−2 and an excellent mobility of 92.8 cm2/V·s at room temperature. X-ray diffraction measurements indicate that HT implantation prevents the formation of other Ga2O3 phases and results in reduced structural defects and lattice damage. These results are highly encouraging for achieving ultra-low resistance heavily doped Ga2O3 layers using ion implantation.more » « less
- 
            Growing a thick high-quality epitaxial layer on the β-Ga2O3 substrate is crucial in commercializing β-Ga2O3 devices. Metal organic chemical vapor deposition (MOCVD) is also well-established for the large-scale commercial growth of β-Ga2O3 and related heterostructures. This paper presents a systematic study of the Schottky barrier diodes fabricated on two different Si-doped homoepitaxial β-Ga2O3 thin films grown on Sn-doped (001) and (010) β-Ga2O3 substrates by MOCVD. X-ray diffraction analysis of the MOCVD-grown sample, room temperature current density–voltage data for different Schottky diodes, and C–V measurements are presented. Diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage, are studied. Temperature dependence (170–360 K) of the ideality factor, barrier height, and Poole–Frenkel reverse leakage mechanism are also analyzed from the J–V–T characteristics of the fabricated Schottky diodes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    