skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels
Abstract Multiplexed, real-time fluorescence detection at the single-molecule level can reveal the stoichiometry, dynamics and interactions of multiple molecular species in mixtures and other complex samples. However, fluorescence-based sensing is typically limited to the detection of just 3–4 colours at a time due to low signal-to-noise ratio, high spectral overlap and the need to maintain the chemical compatibility of dyes. Here we engineered a palette of several dozen composite fluorescent labels, called FRETfluors, for multiplexed spectroscopic measurements at the single-molecule level. FRETfluors are compact nanostructures constructed from three chemical components (DNA, Cy3 and Cy5) with tunable spectroscopic properties due to variations in geometry, fluorophore attachment chemistry and DNA sequence. We demonstrate FRETfluor labelling and detection for low-concentration (<100 fM) mixtures of mRNA, dsDNA and proteins using an anti-Brownian electrokinetic trap. In addition to identifying the unique spectroscopic signature of each FRETfluor, this trap differentiates FRETfluors attached to a target from unbound FRETfluors, enabling wash-free sensing. Although usually considered an undesirable complication of fluorescence, here the inherent sensitivity of fluorophores to the local physicochemical environment provides a new design axis complementary to changing the FRET efficiency. As a result, the number of distinguishable FRETfluor labels can be combinatorically increased while chemical compatibility is maintained, expanding prospects for spectroscopic multiplexing at the single-molecule level using a minimal set of chemical building blocks.  more » « less
Award ID(s):
2121044
PAR ID:
10507407
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Nanotechnology
Volume:
19
Issue:
8
ISSN:
1748-3387
Format(s):
Medium: X Size: p. 1150-1157
Size(s):
p. 1150-1157
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Single-molecule localization microscopy (SMLM) breaks the optical diffraction limit by numerically localizing sparse fluorescence emitters to achieve super-resolution imaging. Spectroscopic SMLM or sSMLM further allows simultaneous spectroscopy and super-resolution imaging of fluorescence molecules. Hence, sSMLM can extract spectral features with single-molecule sensitivity, higher precision, and higher multiplexity than traditional multicolor microscopy modalities. These new capabilities enabled advanced multiplexed and functional cellular imaging applications. While sSMLM suffers from reduced spatial precision compared to conventional SMLM due to splitting photons to form spatial and spectral images, several methods have been reported to mitigate these weaknesses through innovative optical design and image processing techniques. This review summarizes the recent progress in sSMLM, its applications, and our perspective on future work. Graphical Abstract 
    more » « less
  2. Fluorescence-encoded infrared (FEIR) spectroscopy is a recently developed technique for solution-phase vibrational spectroscopy with detection sensitivity at the single-molecule level. While its spectroscopic information content and important criteria for its practical experimental optimization have been identified, a general understanding of the electronic and nuclear properties required for highly sensitive detection, i.e., what makes a molecule a “good FEIR chromophore,” is lacking. This work explores the molecular factors that determine FEIR vibrational activity and assesses computational approaches for its prediction. We employ density functional theory (DFT) and its time-dependent version (TD-DFT) to compute vibrational and electronic transition dipole moments, their relative orientation, and the Franck–Condon factors involved in FEIR activity. We apply these methods to compute the FEIR activities of normal modes of chromophores from the coumarin family and compare these predictions with experimental FEIR cross sections. We discuss the extent to which we can use computational models to predict the FEIR activity of individual vibrations in a candidate molecule. The results discussed in this work provide the groundwork for computational strategies for choosing FEIR vibrational probes or informing the structure of designer chromophores for single-molecule spectroscopic applications. 
    more » « less
  3. Abstract The advances of high-throughput experimentation technology and chemometrics have revolutionized the pace of scientific progress and enabled previously inconceivable discoveries, in particular when used in tandem. Here we show that the combination of chirality sensing based on small-molecule optical probes that bind to amines and amino alcohols via dynamic covalent or click chemistries and powerful chemometric tools that achieve orthogonal data fusion and spectral deconvolution yields a streamlined multi-modal sensing protocol that allows analysis of the absolute configuration, enantiomeric composition and concentration of structurally analogous—and therefore particularly challenging—chiral target compounds without laborious and time-consuming physical separation. The practicality, high accuracy, and speed of this approach are demonstrated with complicated quaternary and octonary mixtures of varying chemical and chiral compositions. The advantages over chiral chromatography and other classical methods include operational simplicity, increased speed, reduced waste production, low cost, and compatibility with multiwell plate technology if high-throughput analysis of hundreds of samples is desired. 
    more » « less
  4. Spectroscopy is a key analytical tool that provides valuable insight into molecular structure and is widely used to identify chemical samples. Tagging spectroscopy is a form of action spectroscopy in which the absorption of a single photon by a molecular ion is detected via the loss of a weakly attached, inert “tag” particle (e.g. He, Ne, N2).1–3 The absorption spectrum is derived from the tag loss rate as a function of incident radiation frequency. To date, all spectroscopy of gas phase polyatomic molecules has been restricted to large molecular ensembles, complicating spectral interpretation by the presence of multiple chemical and isomeric species. Here we present a novel tagging spectroscopic scheme to analyze the purest possible sample: a single gas phase molecule. We demonstrate this technique with the measurement of the infrared spectrum of a single tropylium (C7H7+ ) molecular ion; to our knowledge the first recorded spectrum of a single gas phase polyatomic molecule. Our method’s high sensitivity revealed spectral features previously unobserved using traditional tagging methods.4 Our approach in principle enables analysis of multi-component mixtures by identifying constituent molecules one at a time. Single molecule sensitivity extends action spectroscopy to rare samples, such as those of extraterrestrial origin,5,6 or to reactive reaction intermediates formed at number densities too low for traditional action methods. 
    more » « less
  5. Multiplexed fluorescence detection has become increasingly important in the fields of biosensing and bioimaging. Although a variety of excitation/detection optical designs and fluorescence unmixing schemes have been proposed to allow for multiplexed imaging, rapid and reliable differentiation and quantification of multiple fluorescent species at each imaging pixel is still challenging. Here we present a pulsed interleaved excitation spectral fluorescence lifetime microscopic (PIE-sFLIM) system that can simultaneously image six fluorescent tags in live cells in a single hyperspectral snapshot. Using an alternating pulsed laser excitation scheme at two different wavelengths and a synchronized 16-channel time-resolved spectral detector, our PIE-sFLIM system can effectively excite multiple fluorophores and collect their emission over a broad spectrum for analysis. Combining our system with the advanced live-cell labeling techniques and the lifetime/spectral phasor analysis, our PIE-sFLIM approach can well unmix the fluorescence of six fluorophores acquired in a single measurement, thus improving the imaging speed in live-specimen investigation. 
    more » « less