Abstract Liposomes are effective therapeutic nanocarriers due to their ability to encapsulate and enhance the pharmacokinetic properties of a wide range of drugs and diagnostic agents. A primary area in which improvement is needed for liposomal drug delivery is to maximize the delivery of these nanocarriers to cells. Cell membrane glycans provide exciting targets for liposomal delivery since they are often densely clustered on cell membranes and glycan overabundance and aberrant glycosylation patterns are a common feature of diseased cells. Herein, we report a liposome platform incorporating bis‐boronic acid lipids (BBALs) to increase valency in order to achieve selective saccharide sensing and enhance cell surface recognition based on carbohydrate binding interactions. In order to vary properties, multiple BBALs (1 a–d) with variable linkers in between the binding units were designed and synthesized. Fluorescence‐based microplate screening of carbohydrate binding showed that these compounds exhibit varying binding properties depending on their structures. Additionally, fluorescence microscopy experiments indicated enhancements in cellular association when BBALs were incorporated within liposomes. These results demonstrate that multivalent BBALs serve as an exciting glycan binding liposome system for targeted delivery.
more »
« less
Studies of Protein Binding to Biomimetic Membranes Using a Group of Uniform Materials Based on Organic Salts Derived From 8-Anilino-1-naphthalenesulfonic Acid
Tuning the 8-anilino-1-naphthalenesulfonic acid (ANS) structure usually requires harsh conditions and long reaction times, which can result in low yields. Herein, ANS was modified to form an ANS group of uniform materials based on organic salts (GUMBOS), prepared with simple metathesis reactions and distinct cations, namely tetrabutylammonium (N4444), tetrahexylammonium (N6666), and tetrabutylphosphonium (P4444). These ANS-based GUMBOS were investigated as fluorescent probes for membrane binding studies with four proteins having distinct physicochemical properties. Liposomes of 1,2-dimyristoyl- sn-glycero-3-phosphocholine were employed as membrane models as a result of their ability to mimic the structure and chemical composition of cell membranes. Changes in fluorescence intensity were used to monitor protein binding to liposomes, and adsorption data were fitted to a Freundlich-like isotherm. It was determined that [N4444][ANS] and [P4444][ANS] GUMBOS have enhanced optical properties and lipophilicity as compared to parent ANS. As a result, these two GUMBOS were selected for subsequent protein-membrane binding studies. Both [N4444][ANS] and [P4444][ANS] GUMBOS and parent ANS independently reached membrane saturation within the same concentration range. Furthermore, distinct fluorescence responses were observed upon the addition of proteins to each probe, which demonstrates the impact of properties such as lipophilicity on the binding process. The relative maintenance of binding cooperativity and maximum fluorescence intensity suggests that proteins compete with ANS-based probes for the same membrane binding sites. Finally, this GUMBOS-based approach is simple, rapid, and involves relatively small amounts of reagents, making it attractive for high-throughput purposes. These results presented herein can also provide relevant information for designing GUMBOS with ameliorated properties.
more »
« less
- Award ID(s):
- 2309879
- PAR ID:
- 10507412
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Applied Spectroscopy
- Volume:
- 78
- Issue:
- 8
- ISSN:
- 0003-7028
- Format(s):
- Medium: X Size: p. 806-814
- Size(s):
- p. 806-814
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The organization of membrane proteins between and within membrane-bound compartments is critical to cellular function. Yet we lack approaches to regulate this organization in a range of membrane-based materials, such as engineered cells, exosomes, and liposomes. Uncovering and leveraging biophysical drivers of membrane protein organization to design membrane systems could greatly enhance the functionality of these materials. Towards this goal, we use de novo protein design, molecular dynamic simulations, and cell-free systems to explore how membrane-protein hydrophobic mismatch could be used to tune protein cotranslational integration and organization in synthetic lipid membranes. We find that membranes must deform to accommodate membrane-protein hydrophobic mismatch, which reduces the expression and co-translational insertion of membrane proteins into synthetic membranes. We use this principle to sort proteins both between and within membranes, thereby achieving one-pot assembly of vesicles with distinct functions and controlled split-protein assembly, respectively. Our results shed light on protein organization in biological membranes and provide a framework to design self-organizing membrane-based materials with applications such as artificial cells, biosensors, and therapeutic nanoparticles.more » « less
-
Abstract Liposomes are effective therapeutic delivery nanocarriers due to their ability to encapsulate and enhance the pharmacokinetic properties of a wide range of therapeutics. Two primary areas in which improvement is needed for liposomal drug delivery is to enhance the ability to infiltrate cells and to facilitate derivatization of the liposome surface. Herein, we report a liposome platform incorporating a cyclic disulfide lipid (CDL) for the dual purpose of enhancing cell entry and functionalizing the liposome membrane through thiol‐disulfide exchange. In order to accomplish this,CDL‐1andCDL‐2, composed of lipoic acid (LA) or asparagusic acid (AA) appended to a lipid scaffold, were designed and synthesized. A fluorescence‐based microplate immobilization assay was implemented to show that these compounds enable convenient membrane decoration through reaction with thiol‐functionalized small molecules. Additionally, fluorescence microscopy experiments indicated dramatic enhancements in cellular delivery when CDLs were incorporated within liposomes. These results demonstrate that multifunctional CDLs serve as an exciting liposome system for surface decoration and enhanced cellular delivery.more » « less
-
Electrostatic interactions drive molecular assembly and organization in the plasma membrane. Specific protein-lipid interactions, however, are difficult to resolve. Here we report on a unique approach to investigate these interactions with time-resolved fluorescence spectroscopy. The experiments were performed on a model membrane system consisting of a supported lipid bilayer with an asymmetric distribution of PIP2 in the upper leaflet of the bilayer. The bilayer also contained nickel-chelating lipids that bind to a histidine-tagged peptide of interest. Both the peptide and the lipid were labeled with orthogonal fluorescent probes, so that diffusion and binding could be measured with two-color, pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). Our PIE-FCCS data showed significant lipid-peptide cross-correlation between PIP2 lipids and membrane-bound cationic peptides. Cross-correlation is a direct indication of lipid-peptide binding and complexation. Together with mobility data, we quantified the degree of binding, which offers new insight into this class of lipid-peptide interactions. Overall, this is the first report of lipid-peptide cross-correlation by FCCS, and provides a new route to quantifying the interactions between proteins and lipid membranes, a key interface in cell signaling.more » « less
-
Abstract H2S is a gaseous signaling molecule that modifies cysteine residues in proteins to form persulfides (P‐SSH). One family of proteins modified by H2S are zinc finger (ZF) proteins, which contain multiple zinc‐coordinating cysteine residues. Herein, we report the reactivity of H2S with a ZF protein called tristetraprolin (TTP). Rapid persulfidation leading to complete thiol oxidation of TTP mediated by H2S was observed by low‐temperature ESI‐MS and fluorescence spectroscopy. Persulfidation of TTP required O2 , which reacts with H2S to form superoxide, as detected by ESI‐MS, a hydroethidine fluorescence assay, and EPR spin trapping. H2S was observed to inhibit TTP function (binding to TNFα mRNA) by an in vitro fluorescence anisotropy assay and to modulate TNFα in vivo. H2S was unreactive towards TTP when the protein was bound to RNA, thus suggesting a protective effect of RNA.more » « less
An official website of the United States government
