skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Hydrophobic mismatch drives self-organization of designer proteins into synthetic membranes
Abstract The organization of membrane proteins between and within membrane-bound compartments is critical to cellular function. Yet we lack approaches to regulate this organization in a range of membrane-based materials, such as engineered cells, exosomes, and liposomes. Uncovering and leveraging biophysical drivers of membrane protein organization to design membrane systems could greatly enhance the functionality of these materials. Towards this goal, we use de novo protein design, molecular dynamic simulations, and cell-free systems to explore how membrane-protein hydrophobic mismatch could be used to tune protein cotranslational integration and organization in synthetic lipid membranes. We find that membranes must deform to accommodate membrane-protein hydrophobic mismatch, which reduces the expression and co-translational insertion of membrane proteins into synthetic membranes. We use this principle to sort proteins both between and within membranes, thereby achieving one-pot assembly of vesicles with distinct functions and controlled split-protein assembly, respectively. Our results shed light on protein organization in biological membranes and provide a framework to design self-organizing membrane-based materials with applications such as artificial cells, biosensors, and therapeutic nanoparticles.  more » « less
Award ID(s):
2145050 1844336
PAR ID:
10566285
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Engineering synthetic interfaces between membranes has potential applications in designing non‐native cellular communication pathways and creating synthetic tissues. Here, InterSpy is introduced as a synthetic biology tool consisting of a heterodimeric protein engineered to form and maintain membrane–membrane interfaces between apposing synthetic as well as cell membranes through the SpyTag/SpyCatcher interaction. The inclusion of split fluorescent protein fragments in InterSpy allows tracking of the formation of a membrane–membrane interface and reconstitution of functional fluorescent protein in the space between apposing membranes. First, InterSpy is demonstrated by testing split protein designs using a mammalian cell‐free expression (CFE) system. By utilizing co‐translational helix insertion, cell‐free synthesized InterSpy fragments are incorporated into the membrane of liposomes and supported lipid bilayers with the desired topology. Functional reconstitution of split fluorescent protein between the membranes is strictly dependent on SpyTag/SpyCatcher. Finally, InterSpy is demonstrated in mammalian cells by detecting fluorescence reconstitution of split protein at the membrane–membrane interface between two cells each expressing a component of InterSpy. InterSpy demonstrates the power of CFE systems in the functional reconstitution of synthetic membrane interfaces via proximity‐inducing proteins. This technology may also prove useful where cell‐cell contacts and communication are recreated in a controlled manner using minimal components. 
    more » « less
  2. Cell-free expression (CFE) systems are powerful tools in synthetic biology that allow biomimicry of cellular functions like biosensing and energy regeneration in synthetic cells. Reconstruction of a wide range of cellular processes, however, requires successful reconstitution of membrane proteins into the membrane of synthetic cells. While expression of soluble proteins is usually successful in common CFE systems, reconstitution of membrane proteins in lipid bilayers of synthetic cells has proven to be challenging. Here, a method for reconstitution of a model membrane protein, bacterial glutamate receptor (GluR0), in giant unilamellar vesicles (GUVs) as model synthetic cells based on encapsulation and incubation of the CFE reaction inside synthetic cells is demonstrated. Utilizing this platform, the effect of substituting N-terminal signal peptide of GluR0 with proteorhodopsin signal peptide on successful co-translational translocation of GluR0 into membranes of hybrid GUVs is demonstrated. This method provides a robust procedure that will allow cell-free reconstitution of various membrane proteins in synthetic cells. 
    more » « less
  3. The orientation of integral membrane proteins (IMPs) with respect to the membrane is established during protein synthesis and insertion into the membrane. After synthesis, IMP orientation is thought to be fixed due to the thermodynamic barrier for “flipping” protein loops or helices across the hydrophobic core of the membrane in a process analogous to lipid flip-flop. A notable exception is EmrE, a homodimeric IMP with an N-terminal transmembrane helix that can flip across the membrane until flipping is arrested upon dimerization. Understanding the features of the EmrE sequence that permit this unusual flipping behavior would be valuable for guiding the design of synthetic materials capable of translocating or flipping charged groups across lipid membranes. To elucidate the molecular mechanisms underlying flipping in EmrE and derive bioinspired design rules, we employ atomistic molecular dynamics simulations and enhanced sampling techniques to systematically investigate the flipping of truncated segments of EmrE. Our results demonstrate that a membrane-exposed charged glutamate residue at the center of the N-terminal helix lowers the energetic barrier for flipping (from ~12.1 kcal mol-1 to ~5.4 kcal mol-1) by stabilizing water defects and minimizing membrane perturbation. Comparative analysis reveals that the marginal hydrophobicity of this helix, rather than the marginal hydrophilicity of its loop, is the key determinant of flipping propensity. Our results further indicate that interhelical hydrogen bonding upon dimerization inhibits flipping. These findings establish several bioinspired design principles to govern flipping in related materials: (1) marginally hydrophobic helices with membrane-exposed charged groups promote flipping, (2) modulating protonation states of membrane-exposed groups tunes flipping efficiency, and (3) interhelical hydrogen bonding can be leveraged to arrest flipping. These insights provide a foundation for engineering synthetic peptides, engineered proteins, and biomimetic nanomaterials with controlled flipping or translocation behavior for applications in intracellular drug delivery and membrane protein design. 
    more » « less
  4. The features that stabilize the structures of membrane proteins remain poorly understood. Polar interactions contribute modestly, and the hydrophobic effect contributes little to the energetics of apolar side-chain packing in membranes. Disruption of steric packing can destabilize the native folds of membrane proteins, but is packing alone sufficient to drive folding in lipids? If so, then membrane proteins stabilized by this feature should be readily designed and structurally characterized—yet this has not been achieved. Through simulation of the natural protein phospholamban and redesign of variants, we define a steric packing code underlying its assembly. Synthetic membrane proteins designed using this code and stabilized entirely by apolar side chains conform to the intended fold. Although highly stable, the steric complementarity required for their folding is surprisingly stringent. Structural informatics shows that the designed packing motif recurs across the proteome, emphasizing a prominent role for precise apolar packing in membrane protein folding, stabilization, and evolution. 
    more » « less
  5. Living cells segregate molecules and reactions in various subcellular compartments known as organelles. Spatial organization is likely essential for expanding the biochemical functions of synthetic reaction systems, including artificial cells. Many studies have attempted to mimic organelle functions using lamellar membrane-bound vesicles. However, vesicles typically suffer from highly limited transport across the membranes and an inability to mimic the dense membrane networks typically found in organelles such as the endoplasmic reticulum. Here, we describe programmable synthetic organelles based on highly stable nonlamellar sponge phase droplets that spontaneously assemble from a single-chain galactolipid and nonionic detergents. Due to their nanoporous structure, lipid sponge droplets readily exchange materials with the surrounding environment. In addition, the sponge phase contains a dense network of lipid bilayers and nanometric aqueous channels, which allows different classes of molecules to partition based on their size, polarity, and specific binding motifs. The sequestration of biologically relevant macromolecules can be programmed by the addition of suitably functionalized amphiphiles to the droplets. We demonstrate that droplets can harbor functional soluble and transmembrane proteins, allowing for the colocalization and concentration of enzymes and substrates to enhance reaction rates. Droplets protect bound proteins from proteases, and these interactions can be engineered to be reversible and optically controlled. Our results show that lipid sponge droplets permit the facile integration of membrane-rich environments and self-assembling spatial organization with biochemical reaction systems. 
    more » « less