skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of Class Ⅱ KNOX family in controlling compound leaf patterning in Medicago truncatula
Abstract Compound leaf development requires the coordination of genetic factors, hormones, and other signals. In this study, we explored the functions of Class ⅡKNOTTED‐like homeobox (KNOXII) genes in the model leguminous plantMedicago truncatula. Phenotypic and genetic analyses suggest thatMtKNOX4,5are able to repress leaflet formation, whileMtKNOX3,9,10are not involved in this developmental process. Further investigations have shown that MtKNOX4 represses the CK signal transduction, which is downstream of MtKNOXⅠ‐mediated CK biosynthesis. Additionally, two boundary genes,FUSED COMPOUND LEAF1(orthologue ofArabidopsisClass MKNOX) andNO APICAL MERISTEM(orthologue ofArabidopsis CUP‐SHAPED COTYLEDON), are necessary for MtKNOX4‐mediated compound leaf formation. These findings suggest, that among the members of MtKNOXⅡ, MtKNOX4 plays a crucial role in integrating the CK pathway and boundary regulators, providing new insights into the roles of MtKNOXⅡ in regulating the elaboration of compound leaves inM. truncatula.  more » « less
Award ID(s):
2233714
PAR ID:
10507440
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Integrative Plant Biology
Volume:
65
Issue:
10
ISSN:
1672-9072
Page Range / eLocation ID:
2279 to 2291
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plant cuticles are composed of hydrophobic cuticular waxes and cutin. Very long-chain fatty acids (VLCFAs) are components of epidermal waxes and the plasma membrane and are involved in organ morphogenesis. By screening a barrelclover (Medicago truncatula) mutant population tagged by the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified two types of mutants with unopened flower phenotypes, named unopened flower1 (uof1) and uof2. Both UOF1 and UOF2 encode enzymes that are involved in the biosynthesis of VLCFAs and cuticular wax. Comparative analysis of the mutants indicated that the mutation in UOF1, but not UOF2, leads to the increased number of leaflets in M. truncatula. UOF1 was specifically expressed in the outermost cell layer (L1) of the shoot apical meristem (SAM) and leaf primordia. The uof1 mutants displayed defects in VLCFA-mediated plasma membrane integrity, resulting in the disordered localization of the PIN-FORMED1 (PIN1) ortholog SMOOTH LEAF MARGIN1 (SLM1) in M. truncatula. Our work demonstrates that the UOF1-mediated biosynthesis of VLCFAs in L1 is critical for compound leaf patterning, which is associated with the polarization of the auxin efflux carrier in M. truncatula. 
    more » « less
  2. SUMMARY Medicago truncatulais a model legume for fundamental research on legume biology and symbiotic nitrogen fixation.Tnt1, a retrotransposon from tobacco, was used to generate insertion mutants inM. truncatulaR108. Approximately 21 000 insertion lines have been generated and publicly available.Tnt1retro‐transposition event occurs during somatic embryogenesis (SE), a pivotal process that triggers massive methylation changes. We studied the SE ofM. truncatulaR108 using leaf explants and explored the dynamic shifts in the methylation landscape from leaf explants to callus formation and finally embryogenesis. Higher cytosine methylation in all three contexts of CG, CHG, and CHH patterns was observed during SE compared to the controls. Higher methylation patterns were observed in assumed promoter regions (~2‐kb upstream regions of transcription start site) of the genes, while lowest was recorded in the untranslated regions. Differentially methylated promoter region analysis showed a higher CHH methylation in embryogenesis tissue samples when compared to CG and CHG methylation. Strong correlation (89.71%) was identified between the differentially methylated regions (DMRs) and the site ofTnt1insertions inM. truncatulaR108 and stronger hypermethylation of genes correlated with higher number ofTnt1insertions in all contexts of CG, CHG, and CHH methylation. Gene ontology enrichment and KEGG pathway enrichment analysis identified genes and pathways enriched in the signal peptide processing, ATP hydrolysis, RNA polymerase activity, transport, secondary metabolites, and nitrogen metabolism pathways. Combined gene expression analysis and methylation profiling showed an inverse relationship between methylation in the DMRs (regions spanning genes) and the expression of genes. Our results show that a dynamic shift in methylation happens during the SE process in the context of CG, CHH and CHG methylation, and theTnt1retrotransposition correlates with the hyperactive methylation regions. 
    more » « less
  3. Abstract Plant–insect interactions are ubiquitous, and have been studied intensely because of their relevance to damage and pollination in agricultural plants, and to the ecology and evolution of biodiversity. Variation within species can affect the outcome of these interactions. Specific genes and chemicals that mediate these interactions have been identified, but genome‐ or metabolome‐scale studies might be necessary to better understand the ecological and evolutionary consequences of intraspecific variation for plant–insect interactions. Here, we present such a study. Specifically, we assess the consequences of genome‐wide genetic variation in the model plantMedicago truncatulaforLycaeides melissacaterpillar growth and survival (larval performance). Using a rearing experiment and a whole‐genome SNP data set (>5 million SNPs), we found that polygenic variation inM. truncatulaexplains 9%–41% of the observed variation in caterpillar growth and survival. Genetic correlations among caterpillar performance and other plant traits, including structural defences and some anonymous chemical features, suggest that multipleM. truncatulaalleles have pleiotropic effects on plant traits and caterpillar performance (or that substantial linkage disequilibrium exists among distinct loci affecting subsets of these traits). A moderate proportion of the genetic effect ofM. truncatulaalleles onL. melissaperformance can be explained by the effect of these alleles on the plant traits we measured, especially leaf toughness. Taken together, our results show that intraspecific genetic variation inM. truncatulahas a substantial effect on the successful development ofL. melissacaterpillars (i.e., on a plant–insect interaction), and further point toward traits potentially mediating this genetic effect. 
    more » « less
  4. Abstract Plant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F‐box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legumeMedicago truncatula. In order to further dissect the molecular mechanism, MIO1 was used as the bait to screen its interacting proteins from a yeast library. Subsequently, a KIX protein, designated MtKIX8, was identified from the candidate list. The interaction between MIO1 and MtKIX8 was confirmed further by Y2H, BiFC, split‐luciferase complementation and pull‐down assays. Phylogenetic analyses indicated that MtKIX8 is highly homologous toArabidopsisKIX8, which negatively regulates organ size. Moreover, loss‐of‐function ofMtKIX8led to enlarged leaves and seeds, while ectopic expression ofMtKIX8inArabidopsisresulted in decreased cotyledon area and seed weight. Quantitative reverse‐transcription PCR and in situ hybridization showed thatMtKIX8is expressed in most developing organs. We also found that MtKIX8 serves as a crucial molecular adaptor, facilitating interactions with BIG SEEDS1 (BS1) and MtTOPLESS (MtTPL) proteins inM. truncatula. Overall, our results suggest that the MIO1‐MtKIX8 module plays a significant and conserved role in the regulation of plant organ size. This module could be a good target for molecular breeding in legume crops and forages. 
    more » « less
  5. Fatty acid amide hydrolase (FAAH) is a conserved hydrolase in eukaryotes with promiscuous activity toward a range of acylamide substrates. The native substrate repertoire for FAAH has just begun to be explored in plant systems outside the modelArabidopsis thaliana. Here, we usedex vivolipidomics to identify potential endogenous substrates forMedicago truncatulaFAAH1 (MtFAAH1). We incubated recombinant MtFAAH1 with lipid mixtures extracted fromM. truncatulaand resolved their profiles via gas chromatography–mass spectrometry (GC–MS). Data revealed that besidesN‐acylethanolamines (NAEs),sn‐1orsn‐2isomers of monoacylglycerols (MAGs) were substrates for MtFAAH1. Combined within vitroand computational approaches, our data support both amidase and esterase activities for MtFAAH1. MAG‐mediated hydrolysis via MtFAAH1 may be linked to biological roles that are yet to be discovered. 
    more » « less