We have measured the 30 and 100 eV far ultraviolet (FUV) emission cross sections of the optically allowed Fourth Positive Group (4PG) band system (
This content will become publicly available on January 1, 2025
We report the reduction of O2to H2O2
- Award ID(s):
- 2154727
- PAR ID:
- 10507536
- Publisher / Repository:
- Royal Chemical Society
- Date Published:
- Journal Name:
- Chemical Communications
- ISSN:
- 1359-7345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract A 1Π →X 1Σ+) of CO and the optically forbidden O (5So → 3P) 135.6 nm atomic transition by electron‐impact‐induced‐fluorescence of CO and CO2. We present a model excitation cross section from threshold to high energy for theA 1Π state, including cascade by electron impact on CO. TheA 1Π state is perturbed by triplet states leading to an extended FUV glow from electron excitation of CO. We derive a model FUV spectrum of the 4PG band system from dissociative excitation of CO2, an important process observed on Mars and Venus. Our unique experimental setup consists of a large vacuum chamber housing an electron gun system and the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission Imaging Ultraviolet Spectrograph optical engineering unit, operating in the FUV (110–170 nm). The determination of the total Oi (5So ) at 135.6 nm emission cross section is accomplished by measuring the cylindrical glow pattern of the metastable emission from electron impact by imaging the glow intensity about the electron beam from nominally zero to ~400 mm distance from the electron beam. The study of the glow pattern of Oi (135.6 nm) from dissociative excitation of CO and CO2indicates that the Oi (5So ) state has a kinetic energy of ~1 eV by modeling the radial glow pattern with the published lifetime of 180 μs for the Oi (5So ) state. -
Secondary‐ion mass spectrometry (SIMS) is used to determine impurity concentrations of carbon and oxygen in two scandium‐containing nitride semiconductor multilayer heterostructures: Sc
x Ga1−x N/GaN and Scx Al1−x N/AlN grown by molecular beam epitaxy (MBE). In the Scx Ga1−x N/GaN heterostructure grown in metal‐rich conditions on GaN–SiC template substrates with Sc contents up to 28 at%, the oxygen concentration is found to be below 1 × 1019 cm−3, with an increase directly correlated with the scandium content. In the Scx Al1−x N–AlN heterostructure grown in nitrogen‐rich conditions on AlN–Al2O3template substrates with Sc contents up to 26 at%, the oxygen concentration is found to be between 1019and 1021 cm−3, again directly correlated with the Sc content. The increase in oxygen and carbon takes place during the deposition of scandium‐alloyed layers. -
Abstract A density functional theoretical (DFT) study is presented, implicating a1O2oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and an
iso ‐hydroperoxide intermediate [R(H)O+– O−] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a1O2‘ene’ reaction. Instead, the dihydrobenzofuran arises by1O2oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidalN ‐methyl group. This curvature facilitates the formation of theiso ‐hydroperoxide, which is analogous to theiso species CH2I+– I−and CHI2+– I−formed by UV photolysis of CH2I2and CHI3. Theiso ‐hydroperoxide is also structurally reminiscent of carbonyl oxides (R2C=O+– O−) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which theiso ‐hydroperoxide's fate relates to O‐transfer and H2O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products. -
Abstract A mouse monoclonal antibody (mAb FL100A) previously prepared against
Flavobacterium psychrophilum (Fp ) CSF259‐93 has now been examined for binding to lipopolysaccharides (LPS) of this strain andFp 950106‐1/1. The corresponding O‐polysaccharides (O‐PS) of these strains are formed by identical trisaccharide repeats composed ofl ‐Rhamnose (l ‐Rha), 2‐acetamido‐2‐deoxy‐l ‐fucose (l ‐FucNAc) and 2‐acetamido‐4‐R1‐2,4‐dideoxy‐d ‐quinovose (d ‐Qui2NAc4NR1) where R1represents a dihydroxyhexanamido moiety. The O‐PS loci of these strains are also identical except for the gene (wzy1 orwzy2 ) that encodes the polysaccharide polymerase. Accordingly, adjacent O‐PS repeats are joined throughd ‐Qui2NAc4NR1andl ‐Rha bywzy2 ‐dependent α(1–2) linkages inFp CSF259‐93 versuswzy1 ‐dependent β(1–3) linkages inFp 950106‐1/1. mAb FL100A reacted strongly withFp CSF259‐93 O‐PS and LPS but weakly or not at all withFp 950106‐1/1 LPS and O‐PS. Importantly, it also labelled cell surface blebs on the former but not the latter strain. Additionally, mAb binding was approximately 5‐times stronger to homologousFp CSF259‐93 LPS than to LPS from a strain with a different R‐group gene. A conformational epitope for mAb FL100A binding was suggested from molecular dynamic simulations of each O‐PS. Thus,Fp CSF259‐93 O‐PS formed a stable well‐defined compact helix in which the R1groups were displayed in a regular pattern on the helix exterior while unreactiveFp 950106‐1/1 O‐PS adopted a flexible extended linear conformation. Taken together, the findings establish the specificity of mAb FL100A for Wzy2‐linkedF. psychrophilum O‐PS and LPS.