skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soil moisture incidentally selects for microbes that facilitate locally adaptive plant response
While a plant's microbiome can facilitate adaptive phenotypes, the plant's role in selecting for these microbes is unclear. Do plants actively recruit microbes beneficial to their current environment, or are beneficial microbes only an incidental by-product of microbial adaptation? We addressed these questions through a multigeneration greenhouse experiment, selecting for either dry- or wet-adapted soil microbial communities, either with or without plants. After three plant generations, we conducted a full reciprocal transplant of each soil community onto wet- and dry-treated plants. We found that plants generally benefited from soil microbes, and this benefit was greater whenever their current watering conditions matched the microbes' historical watering conditions. Principally, the plant's presence was not necessary in the historical treatments for this environmental matching benefit to emerge. Moreover, we found microbes from droughted soils could better tolerate drought stress. Taken together, these results suggest that the moisture environment selects for microbes that benefit plants under those specific moisture conditions, and that these beneficial properties arise as a by-product of microbial adaptation to the watering environment and not as a co-adapting plant–microbe system. This work highlights that understanding the selective agents on these plant-associated microbes will lead to a better understanding of plant adaptation.  more » « less
Award ID(s):
2022049
PAR ID:
10507561
Author(s) / Creator(s):
;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
2001
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microbes can promote beneficial plant and animal responses to abiotic environments, but the ecological drivers of this benefit remain elusive. Here we investigated byproduct benefits, which occur when traits that increase the fitness of one species provide incidental benefits to another species with no direct cost to the provider species. In experimental mesocosms, microbial traits predicted plant responses to soil moisture such that bacteria with self-beneficial traits in drought increased plant early growth, size at reproduction, and chlorophyll concentration under drought, while bacteria with self-beneficial traits in well-watered environments increased these same plant traits in well-watered environments. Thus, microbial traits that promote microbial success in different soil moisture environments also promote plant success in these same environments. Our results show that the concept of byproduct benefits, originally conceived to explain the evolution of cooperation in pairwise mutualisms, also applies to interactions between plants and non-symbiotic soil microbes. Descriptions of the data can be found in the README_Bolin_Lennon_Lau_2022.txt file. 
    more » « less
  2. ABSTRACT The importance of biota to soil formation and landscape development is widely recognized. As biotic complexity increases during early succession via colonization by soil microbes followed by vascular plants, effects of biota on mineral weathering and soil formation become more complex. Knowledge of the interactions among groups of organisms and environmental conditions will enable us to better understand landscape evolution. Here, we used experimental columns of unweathered granular basalt to investigate how early successional soil microbes, vascular plants (alfalfa;Medicago sativa), and soil moisture interact to affect both plant performance and mineral weathering. We found that the presence of soil microbes reduced plant growth rates, total biomass, and survival, which suggests that plants and microbes were competing for nutrients in this environment. However, we also found considerable genotype‐specific variation in plant–microbial interactions, which underscores the importance of within‐species genetic variation on biotic interactions. We also found that the presence of vascular plants reduced variability in pH and electrical conductivity, suggesting that plants may homogenize weathering reactions across the soil column. We also show that there is heterogeneity in the abiotic conditions in which microbes, plants, or their combination have the strongest effect on weathering, and that many of these relationships are sensitive to soil moisture. Our findings highlight the importance of interdependent effects of environmental and biotic factors on weathering during initial landscape formation. 
    more » « less
  3. Arias, Renee S. (Ed.)
    ABSTRACT Due to climate change, drought frequencies and severities are predicted to increase across the United States. Plant responses and adaptation to stresses depend on plant genetic and environmental factors. Understanding the effect of those factors on plant performance is required to predict species’ responses to environmental change. We used reciprocal gardens planted with distinct regional ecotypes of the perennial grassAndropogon gerardiiadapted to dry, mesic, and wet environments to characterize their rhizosphere communities using 16S rRNA metabarcode sequencing. Even though the local microbial pool was the main driver of these rhizosphere communities, the significant plant ecotypic effect highlighted active microbial recruitment in the rhizosphere, driven by ecotype or plant genetic background. Our data also suggest that ecotypes planted at their homesites were more successful in recruiting rhizosphere community members that were unique to the location. The link between the plants’ homesite and the specific local microbes supported the “home field advantage” hypothesis. The unique homesite microbes may represent microbial specialists that are linked to plant stress responses. Furthermore, our data support ecotypic variation in the recruitment of congeneric but distinct bacterial variants, highlighting the nuanced plant ecotype effects on rhizosphere microbiome recruitment. These results improve our understanding of the complex plant host–soil microbe interactions and should facilitate further studies focused on exploring the functional potential of recruited microbes. Our study has the potential to aid in predicting grassland ecosystem responses to climate change and impact restoration management practices to promote grassland sustainability. IMPORTANCEIn this study, we used reciprocal gardens located across a steep precipitation gradient to characterize rhizosphere communities of distinct dry, mesic, and wet regional ecotypes of the perennial grassAndropogon gerardii. We used 16S rRNA amplicon sequencing and focused oligotyping analysis and showed that even though location was the main driver of the microbial communities, ecotypes could potentially recruit distinct bacterial populations. We showed that differentA. gerardiiecotypes were more successful in overall community recruitment and recruitment of microbes unique to the “home” environment, when growing at their “home site.” We found evidence for “home-field advantage” interactions between the host and host–root-associated bacterial communities, and the capability of ecotypes to recruit specialized microbes that were potentially linked to plant stress responses. Our study aids in a better understanding of the factors that affect plant adaptation, improve management strategies, and predict grassland function under the changing climate. 
    more » « less
  4. Abstract Microorganisms can help plants and animals contend with abiotic stressors, but why they provide such benefits remains unclear. Here we investigated byproduct benefits, which occur when traits that increase the fitness of one species provide incidental benefits to another species with no direct cost to the provider. In a greenhouse experiment, microbial traits predicted plant responses to soil moisture such that bacteria with self‐beneficial traits in drought increased plant early growth, size at reproduction, and chlorophyll concentration under drought, while bacteria with self‐beneficial traits in well‐watered environments increased these same plant traits in well‐watered soils. Thus, microbial traits that promote microbial success in different moisture environments also promote plant success in these same environments. Our results demonstrate that byproduct benefits, a concept developed to explain the evolution of cooperation in pairwise mutualisms, can also extend to interactions between plants and nonsymbiotic soil microbes. 
    more » « less
  5. Coastal wetlands can store carbon by sequestering more carbon through primary production than they release though biogenic greenhouse gas production. The joint effects of saltwater intrusion and sea level rise (SWISLR) and changing precipitation patterns alter sulfate and oxygen availability, challenging estimates of biogenic greenhouse gas emissions. Iron-rich soils have been shown to buffer soil sulfidization by sequestering sulfide into iron-sulfide. But as SWISLR increases soil sulfate concentrations, sulfide produced via sulfate reduction will likely exceed the buffering capacity of soil iron, allowing toxic sulfide levels to accumulate. We used a soil mesocosm approach to examine the influence of hydrology (wet, dry, interim) and plant presence (with or without plants) on wetland soils sourced from different hydrologic histories at a restored coastal wetland. We hypothesized that reducing conditions (i.e., flooded, no plants) impact anaerobic metabolisms similarly, whereas oxidizing conditions (i.e., dry, plant presence) disrupt coupled sulfate reduction and iron reduction. Over eight weeks of hydrologic manipulation, 16S rRNA amplicon sequencing and shotgun metagenomic sequencing were used to characterize microbial communities, while greenhouse gas fluxes, soil redox potential, and physicochemical properties were measured. Results showed that contemporary hydrologic treatment affected assimilatory sulfate reduction gene composition, and hydrologic history influenced dissimilatory sulfate reduction and iron reduction gene composition. Sulfate and iron reduction genes were correlated, and dissimilatory sulfate reduction genes explained variance in methane fluxes. These findings highlight the role of historical hydrology, potential saltwater exposure, and soil iron in shaping microbial responses to future changes in soil moisture and salinity. 
    more » « less