skip to main content


Search for: All records

Award ID contains: 2022049

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Microorganisms can help plants and animals contend with abiotic stressors, but why they provide such benefits remains unclear. Here we investigated byproduct benefits, which occur when traits that increase the fitness of one species provide incidental benefits to another species with no direct cost to the provider. In a greenhouse experiment, microbial traits predicted plant responses to soil moisture such that bacteria with self‐beneficial traits in drought increased plant early growth, size at reproduction, and chlorophyll concentration under drought, while bacteria with self‐beneficial traits in well‐watered environments increased these same plant traits in well‐watered soils. Thus, microbial traits that promote microbial success in different moisture environments also promote plant success in these same environments. Our results demonstrate that byproduct benefits, a concept developed to explain the evolution of cooperation in pairwise mutualisms, can also extend to interactions between plants and nonsymbiotic soil microbes.

     
    more » « less
  2. Abstract

    Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae.

     
    more » « less
  3. Wilson, Daniel ; Parkhill, Julian (Ed.)
    ABSTRACT A goal of modern biology is to develop the genotype-phenotype (G→P) map, a predictive understanding of how genomic information generates trait variation that forms the basis of both natural and managed communities. As microbiome research advances, however, it has become clear that many of these traits are symbiotic extended phenotypes , being governed by genetic variation encoded not only by the host’s own genome, but also by the genomes of myriad cryptic symbionts. Building a reliable G→P map therefore requires accounting for the multitude of interacting genes and even genomes involved in symbiosis. Here, we use naturally occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti paired with two genotypes of the host Medicago truncatula in four genome-wide association studies (GWAS) to determine the genomic architecture of a key symbiotic extended phenotype— partner quality , or the fitness benefit conferred to a host by a particular symbiont genotype, within and across environmental contexts and host genotypes. We define three novel categories of loci in rhizobium genomes that must be accounted for if we want to build a reliable G→P map of partner quality; namely, (i) loci whose identities depend on the environment, (ii) those that depend on the host genotype with which rhizobia interact, and (iii) universal loci that are likely important in all or most environments. IMPORTANCE Given the rapid rise of research on how microbiomes can be harnessed to improve host health, understanding the contribution of microbial genetic variation to host phenotypic variation is pressing, and will better enable us to predict the evolution of (and select more precisely for) symbiotic extended phenotypes that impact host health. We uncover extensive context-dependency in both the identity and functions of symbiont loci that control host growth, which makes predicting the genes and pathways important for determining symbiotic outcomes under different conditions more challenging. Despite this context-dependency, we also resolve a core set of universal loci that are likely important in all or most environments, and thus, serve as excellent targets both for genetic engineering and future coevolutionary studies of symbiosis. 
    more » « less
  4. Stajich, Jason E. (Ed.)
    ABSTRACT Insect-associated fungi play an important role in wild and agricultural communities. We present a draft genome sequence of an entomopathogenic strain from the fungal genus Aspergillus , isolated from a honey bee pupa. 
    more » « less
  5. Imperiale, Michael J. (Ed.)
    ABSTRACT By entering a reversible state of reduced metabolic activity, dormant microorganisms are able to tolerate suboptimal conditions that would otherwise reduce their fitness. Dormancy may also benefit bacteria by serving as a refuge from parasitic infections. Here, we focus on dormancy in the Bacillota , where endospore development is transcriptionally regulated by the expression of sigma factors. A disruption of this process could influence the survivorship or reproduction of phages that infect spore-forming hosts with implications for coevolutionary dynamics. We characterized the distribution of sigma factors in over 4,000 genomes of diverse phages capable of infecting hosts that span the bacterial domain. From this, we identified homologs of sporulation-specific sigma factors in phages that infect spore-forming hosts. Unlike sigma factors required for phage reproduction, we provide evidence that sporulation-like sigma factors are nonessential for lytic infection. However, when expressed in the spore-forming Bacillus subtilis , some of these phage-derived sigma factors can activate the bacterial sporulation gene network and lead to a reduction in spore yield. Our findings suggest that the acquisition of host-like transcriptional regulators may allow phages to manipulate a complex and ancient trait in one of the most abundant cell types on Earth. IMPORTANCE As obligate parasites, phages exert strong top-down pressure on host populations with eco-evolutionary implications for community dynamics and ecosystem functioning. The process of phage infection, however, is constrained by bottom-up processes that influence the energetic and nutritional status of susceptible hosts. Many phages have acquired auxiliary genes from bacteria, which can be used to exploit host metabolism with consequences for phage fitness. In this study, we demonstrate that phages infecting spore-forming bacteria carry homologs of sigma factors, which their hosts use to orchestrate gene expression during spore development. By tapping into regulatory gene networks, phages may manipulate the physiology and survival strategies of nongrowing bacteria in ways that influence host-parasite coevolution. 
    more » « less