Background: Type 1 diabetes (T1D) is a devastating autoimmune disease, and its rising prevalence in the United States and around the world presents a critical problem in public health. While some treatment options exist for patients already diagnosed, individuals considered at risk for developing T1D and who are still in the early stages of their disease pathogenesis without symptoms have no options for any preventive intervention. This is because of the uncertainty in determining their risk level and in predicting with high confidence who will progress, or not, to clinical diagnosis. Biomarkers that assess one’s risk with high certainty could address this problem and will inform decisions on early intervention, especially in children where the burden of justifying treatment is high. Single omics approaches (e.g., genomics, proteomics, metabolomics, etc.) have been applied to identify T1D biomarkers based on specific disturbances in association with the disease. However, reliable early biomarkers of T1D have remained elusive to date. To overcome this, we previously showed that parallel multi-omics provides a more comprehensive picture of the disease-associated disturbances and facilitates the identification of candidate T1D biomarkers. Methods: This paper evaluated the use of machine learning (ML) using data augmentation and supervised ML methods for the purpose of improving the identification of salient patterns in the data and the ultimate extraction of novel biomarker candidates in integrated parallel multi-omics datasets from a limited number of samples. We also examined different stages of data integration (early, intermediate, and late) to assess at which stage supervised parametric models can learn under conditions of high dimensionality and variation in feature counts across different omics. In the late integration scheme, we employed a multi-view ensemble comprising individual parametric models trained over single omics to address the computational challenges posed by the high dimensionality and variation in feature counts across the different yet integrated multi-omics datasets. Results: the multi-view ensemble improves the prediction of case vs. control and finds the most success in flagging a larger consistent set of associated features when compared with chance models, which may eventually be used downstream in identifying a novel composite biomarker signature of T1D risk. Conclusions: the current work demonstrates the utility of supervised ML in exploring integrated parallel multi-omics data in the ongoing quest for early T1D biomarkers, reinforcing the hope for identifying novel composite biomarker signatures of T1D risk via ML and ultimately informing early treatment decisions in the face of the escalating global incidence of this debilitating disease. 
                        more » 
                        « less   
                    
                            
                            A Composite Biomarker Signature of Type 1 Diabetes Risk Identified via Augmentation of Parallel Multi-Omics Data from a Small Cohort
                        
                    
    
            Biomarkers of early pathogenesis of type 1 diabetes (T1D) are crucial to enable effective prevention measures in at-risk populations before significant damage occurs to their insulin producing beta-cell mass. We recently introduced the concept of integrated parallel multi-omics and employed a novel data augmentation approach which identified promising candidate biomarkers from a small cohort of high-risk T1D subjects. We now validate selected biomarkers to generate a potential composite signature of T1D risk. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2051800
- PAR ID:
- 10507577
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Background: Type 1 diabetes (T1D) is a devastating disease with serious health complications. Early T1D biomarkers that could enable timely detection and prevention before the onset of clinical symptoms are paramount but currently unavailable. Despite their promise, omics approaches have so far failed to deliver such biomarkers, likely due to the fragmented nature of information obtained through the single omics approach. We recently demonstrated the utility of parallel multi-omics for the identification of T1D biomarker signatures. Our studies also identified challenges. Methods: Here, we evaluated a novel computational approach of data imputation and amplification as one way to overcome challenges associated with the relatively small number of subjects in these studies. Results: Using proprietary algorithms, we amplified our quadra-omics (proteomics, metabolomics, lipidomics, and transcriptomics) dataset from nine subjects a thousand-fold and analyzed the data using Ingenuity Pathway Analysis (IPA) software to assess the change in its analytical capabilities and biomarker prediction power in the amplified datasets compared to the original. These studies showed the ability to identify an increased number of T1D-relevant pathways and biomarkers in such computationally amplified datasets, especially, at imputation ratios close to the “golden ratio” of 38.2%:61.8%. Specifically, the Canonical Pathway and Diseases and Functions modules identified higher numbers of inflammatory pathways and functions relevant to autoimmune T1D, including novel ones not identified in the original data. The Biomarker Prediction module also predicted in the amplified data several unique biomarker candidates with direct links to T1D pathogenesis. Conclusions: These preliminary findings indicate that such large-scale data imputation and amplification approaches are useful in facilitating the discovery of candidate integrated biomarker signatures of T1D or other diseases by increasing the predictive range of existing data mining tools, especially when the size of the input data is inherently limited.more » « less
- 
            OBJECTIVETo characterize high type 1 diabetes (T1D) genetic risk in a population where type 2 diabetes (T2D) predominates. RESEARCH DESIGN AND METHODSCharacteristics typically associated with T1D were assessed in 109,594 Million Veteran Program participants with adult-onset diabetes, 2011–2021, who had T1D genetic risk scores (GRS) defined as low (0 to <45%), medium (45 to <90%), high (90 to <95%), or highest (≥95%). RESULTST1D characteristics increased progressively with higher genetic risk (P < 0.001 for trend). A GRS ≥ 90% was more common with diabetes diagnoses before age 40 years, but 95% of those participants were diagnosed at age ≥40 years, and they resembled T2D in mean age (64.3 years) and BMI (32.3 kg/m2). Compared with the low risk group, the highest-risk group was more likely to have diabetic ketoacidosis (low 0.9% vs. highest GRS 3.7%), hypoglycemia prompting emergency visits (3.7% vs. 5.8%), outpatient plasma glucose <50 mg/dL (7.5% vs. 13.4%), a shorter median time to start insulin (3.5 vs. 1.4 years), use of a T1D diagnostic code (16.3% vs. 28.1%), low C-peptide levels if tested (1.8% vs. 32.4%), and glutamic acid decarboxylase antibodies (6.9% vs. 45.2%), all P < 0.001. CONCLUSIONSCharacteristics associated with T1D were increased with higher genetic risk, and especially with the top 10% of risk. However, the age and BMI of those participants resemble people with T2D, and a substantial proportion did not have diagnostic testing or use of T1D diagnostic codes. T1D genetic screening could be used to aid identification of adult-onset T1D in settings in which T2D predominates.more » « less
- 
            Children with Type 1 Diabetes (T1D) face many challenges with keeping their blood glucose levels within a healthy range because they cannot manage their illness by themselves. To prevent children’s blood glucose from becoming too high or too low, parents apply different strategies to avoid risky situations. To understand how parents of children with T1D manage these risks, we conducted semi-structured interviews with children with T1D (ages 6-12) and their parents (N=41). We identified four types of strategies used by parents (i.e., educated guessing game, contingency planning, experimentation, and reaching out for help) that can be categorized according to two dimensions: 1) the cause of risk (known or unknown) and 2) the occurrence of risk (predictable or unpredictable). Based on our findings, we provide design implications for collaborative health technologies that support parents in better planning for contingencies and identifying unknown causes of risks together with their children.more » « less
- 
            OBJECTIVETo determine the benefit of starting continuous glucose monitoring (CGM) in adult-onset type 1 diabetes (T1D) and type 2 diabetes (T2D) with regard to longer-term glucose control and serious clinical events. RESEARCH DESIGN AND METHODSA retrospective observational cohort study within the Veterans Affairs Health Care System was used to compare glucose control and hypoglycemia- or hyperglycemia-related admission to an emergency room or hospital and all-cause hospitalization between propensity score overlap weighted initiators of CGM and nonusers over 12 months. RESULTSCGM users receiving insulin (n = 5,015 with T1D and n = 15,706 with T2D) and similar numbers of nonusers were identified from 1 January 2015 to 31 December 2020. Declines in HbA1c were significantly greater in CGM users with T1D (−0.26%; 95% CI −0.33, −0.19%) and T2D (−0.35%; 95% CI −0.40, −0.31%) than in nonusers at 12 months. Percentages of patients achieving HbA1c <8 and <9% after 12 months were greater in CGM users. In T1D, CGM initiation was associated with significantly reduced risk of hypoglycemia (hazard ratio [HR] 0.69; 95% CI 0.48, 0.98) and all-cause hospitalization (HR 0.75; 95% CI 0.63, 0.90). In patients with T2D, there was a reduction in risk of hyperglycemia in CGM users (HR 0.87; 95% CI 0.77, 0.99) and all-cause hospitalization (HR 0.89; 95% CI 0.83, 0.97). Several subgroups (based on baseline age, HbA1c, hypoglycemic risk, or follow-up CGM use) had even greater responses. CONCLUSIONSIn a large national cohort, initiation of CGM was associated with sustained improvement in HbA1c in patients with later-onset T1D and patients with T2D using insulin. This was accompanied by a clear pattern of reduced risk of admission to an emergency room or hospital for hypoglycemia or hyperglycemia and of all-cause hospitalization.more » « less
 An official website of the United States government
An official website of the United States government 
				
			
 
                                    