Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Galaxy-cluster gravitational lenses enable the study of faint galaxies even at large lookback times, and, recently, time-delay constraints on the Hubble constant. There have been few tests, however, of lens model predictions adjacent to the critical curve (≲8″) where the magnification is greatest. In a companion paper, we use the GLAFIC lens model to constrain the BalmerL–σrelation for Hiiregions in a galaxy at redshiftz= 1.49 strongly lensed by the MACS J1149 galaxy cluster. Here we perform a detailed comparison between the predictions of 10 cluster lens models that employ multiple modeling assumptions with our measurements of 11 magnified, giant Hiiregions. We find that that the models predict magnifications an average factor of 6.2 smaller, a ∼2σtension, than that inferred from the Hiiregions under the assumption that they follow the low-redshiftL–σrelation. To evaluate the possibility that the lens model magnifications are strongly biased, we next consider the flux ratios among knots in three images of Sp1149, and find that these are consistent with model predictions. Moreover, while the mass-sheet degeneracy could in principle account for a factor of ∼6 discrepancy in magnification, the value ofH0inferred from SN Refsdal’s time delay would become implausibly small. We conclude that the lens models are not likely to be highly biased, and that instead the Hiiregions in Sp1149 are substantially more luminous than the low-redshift BalmerL–σrelation predicts.more » « less
-
Abstract Dark matter subhalos with extended profiles and density cores, and globular star clusters of mass 106–108M⊙that live near the critical curves in galaxy cluster lenses can potentially be detected through their lensing magnification of stars in background galaxies. In this work, we study the effect such subhalos have on lensed images, and compare to the case of more well-studied microlensing by stars and black holes near critical curves. We find that the cluster density gradient and the extended mass distribution of subhalos are important in determining image properties. Both lead to an asymmetry between the image properties on the positive- and negative-parity sides of the cluster that is more pronounced than in the case of microlensing. For example, on the negative-parity side, subhalos with cores larger than about 50 pc do not generate any images with magnification above ∼100 outside of the immediate vicinity of the cluster critical curve. We discuss these factors using analytical and numerical analysis, and exploit them to identify observable signatures of subhalos: Subhalos create pixel-to-pixel flux variations of ≳0.1 mag on the positive-parity side of clusters. These pixels tend to cluster around (otherwise invisible) subhalos. Unlike in the case of microlensing, signatures of subhalo lensing can be found up to 1″ away from the critical curves of massive clusters.more » « less
-
ABSTRACT We present a new analysis of the rest-frame ultraviolet (UV) and optical spectra of a sample of three z > 8 galaxies discovered behind the gravitational lensing cluster RX J2129.4+0009. We combine these observations with z > 7.5 galaxies from the literature, for which similar measurements are available. As already pointed out in other studies, the high [O iii]λ5007/[O ii]λ3727 ratios (O32) and steep UV continuum slopes (β) are consistent with the values observed for low-redshift Lyman continuum emitters, suggesting that such galaxies contribute to the ionizing budget of the intergalactic medium. We construct a logistic regression model to estimate the probability of a galaxy being a Lyman continuum emitter based on the measured MUV, β, and O32. Using this probability and the UV luminosity function, we construct an empirical model that estimates the contribution of high-redshift galaxies to reionization. The preferred scenario in our analysis shows that at z ∼ 8, the average escape fraction of the galaxy population [i.e. including both LyC emitters (LCEs) and non-emitters] varies with MUV, with intermediate UV luminosity (−19 < MUV < −16) galaxies having larger escape fraction. Galaxies with faint UV luminosity (−16 < MUV < −13.5) contribute most of the ionizing photons. The relative contribution of faint versus bright galaxies depends on redshift, with the intermediate UV galaxies becoming more important over time. UV bright galaxies, although more likely to be LCEs at a given log(O32) and β, contribute the least of the total ionizing photon budget.more » « less
-
Abstract A tight positive correlation between the stellar mass and the gas-phase metallicity of galaxies has been observed at low redshifts. The redshift evolution of this correlation can strongly constrain theories of galaxy evolution. The advent of JWST allows probing the mass–metallicity relation at redshifts far beyond what was previously accessible. Here we report the discovery of two emission line galaxies at redshifts 8.15 and 8.16 in JWST NIRCam imaging and NIRSpec spectroscopy of targets gravitationally lensed by the cluster RX J2129.4+0005. We measure their metallicities and stellar masses along with nine additional galaxies at 7.2 <zspec< 9.5 to report the first quantitative statistical inference of the mass–metallicity relation atz≈ 8. We measure ∼0.9 dex evolution in the normalization of the mass–metallicity relation fromz≈ 8 to the local universe; at a fixed stellar mass, galaxies are 8 times less metal enriched atz≈ 8 compared to the present day. Our inferred normalization is in agreement with the predictions of FIRE simulations. Our inferred slope of the mass–metallicity relation is similar to or slightly shallower than that predicted by FIRE or observed at lower redshifts. We compare thez≈ 8 galaxies to extremely low-metallicity analog candidates in the local universe, finding that they are generally distinct from extreme emission line galaxies or “green peas,” but are similar in strong emission line ratios and metallicities to “blueberry galaxies.” Despite this similarity, at a fixed stellar mass, thez≈ 8 galaxies have systematically lower metallicities compared to blueberry galaxies.more » « less
-
Abstract Supernova (SN) SN H0pe is a gravitationally lensed, triply imaged, Type Ia SN (SN Ia) discovered in James Webb Space Telescope imaging of the PLCK G165.7+67.0 cluster of galaxies. Well-observed multiply imaged SNe provide a rare opportunity to constrain the Hubble constant (H0), by measuring the relative time delay between the images and modeling the foreground mass distribution. SN H0pe is located atz= 1.783 and is the first SN Ia with sufficient light-curve sampling and long enough time delays for anH0inference. Here we present photometric time-delay measurements and SN properties of SN H0pe. Using JWST/NIRCam photometry, we measure time delays of Δtab= observer-frame days and Δtcb= observer-frame days relative to the last image to arrive (image 2b; all uncertainties are 1σ), which corresponds to a ∼5.6% uncertainty contribution forH0assuming 70 km s−1Mpc−1. We also constrain the absolute magnification of each image toμa= ,μb= ,μc= by comparing the observed peak near-IR magnitude of SN H0pe to the nonlensed population of SNe Ia.more » « less
-
ABSTRACT The Reionization Cluster Survey imaged 41 galaxy clusters with the Hubble Space Telescope (HST), in order to detect lensed and high-redshift galaxies. Each cluster was imaged to about 26.5 AB mag in three optical and four near-infrared bands, taken in two distinct visits separated by varying time intervals. We make use of the multiple near-infrared epochs to search for transient sources in the cluster fields, with the primary motivation of building statistics for bright caustic crossing events in gravitational arcs. Over the whole sample, we do not find any significant (≳5σ) caustic crossing events, in line with expectations from semi-analytical calculations but in contrast to what may be naively expected from previous detections of some bright events or from deeper transient surveys that do find high rates of such events. Nevertheless, we find six prominent supernova (SN) candidates over the 41 fields: three of them were previously reported and three are new ones reported here for the first time. Out of the six candidates, four are likely core-collapse SNe – three in cluster galaxies, and among which only one was known before, and one slightly behind the cluster at z ∼ 0.6–0.7. The other two are likely Ia – both of them previously known, one probably in a cluster galaxy and one behind it at z ≃ 2. Our study supplies empirical bounds for the rate of caustic crossing events in galaxy cluster fields to typical HST magnitudes, and lays the groundwork for a future SN rate study.more » « less
-
Abstract We report the discovery of an extremely magnified star at redshiftz= 2.65 in the James Webb Space Telescope (JWST) NIRISS pre-imaging of the A2744 galaxy-cluster field. The star’s background host galaxy lies on a fold caustic of the foreground lens, and the cluster creates a pair of images of the region close to the lensed star. We identified the bright transient in one of the merging images at a distance of ∼0.″15 from the critical curve by subtracting the JWST F115W and F150W imaging from coadditions of archival Hubble Space Telescope (HST) F105W and F125W images and F140W and F160W images, respectively. Since the time delay between the two images should be only hours, the transient must be the microlensing event of an individual star, as opposed to a luminous stellar explosion that would persist for days to months. Analysis of individual exposures suggests that the star’s magnification is not changing rapidly during the observations. From photometry of the point source through the F115W, F150W, and F200W filters, we identify a strong Balmer break, and modeling allows us to constrain the star’s temperature to be approximately 7000–12,000 K.more » « less
-
Abstract In late 2014, four images of supernova (SN) “Refsdal,” the first known example of a strongly lensed SN with multiple resolved images, were detected in the MACS J1149 galaxy-cluster field. Following the images’ discovery, the SN was predicted to reappear within hundreds of days at a new position ∼8″ away in the field. The observed reappearance in late 2015 makes it possible to carry out Refsdal’s original proposal to use a multiply imaged SN to measure the Hubble constantH0, since the time delay between appearances should vary inversely withH0. Moreover, the position, brightness, and timing of the reappearance enable a novel test of the blind predictions of galaxy-cluster models, which are typically constrained only by the positions of multiply imaged galaxies. We have developed a new photometry pipeline that usesDOLPHOTto measure the fluxes of the five images of SN Refsdal from difference images. We apply four separate techniques to perform a blind measurement of the relative time delays and magnification ratios between the last image SX and the earlier images S1–S4. We measure the relative time delay of SX–S1 to be days and the relative magnification to be . This corresponds to a 1.5% precision on the time delay and 17% precision for the magnification ratios and includes uncertainties due to millilensing and microlensing. In an accompanying paper, we place initial and blind constraints on the value of the Hubble constant.more » « less
-
ABSTRACT We present optical and near-infrared (NIR) observations of the Type Icn supernova (SN Icn) 2022ann, the fifth member of its newly identified class of SNe. Its early optical spectra are dominated by narrow carbon and oxygen P-Cygni features with absorption velocities of ∼800 km s−1; slower than other SNe Icn and indicative of interaction with a dense, H/He-poor circumstellar medium (CSM) that is outflowing slower than typical Wolf–Rayet wind velocities of >1000 km s−1. We identify helium in NIR spectra 2 weeks after maximum and in optical spectra at 3 weeks, demonstrating that the CSM is not fully devoid of helium. Unlike other SNe Icn, the spectra of SN 2022ann never develop broad features from SN ejecta, including in the nebular phase. Compared to other SNe Icn, SN 2022ann has a low luminosity (o-band absolute magnitude of ∼−17.7), and evolves slowly. The bolometric light curve is well-modelled by 4.8 M⊙ of SN ejecta interacting with 1.3 M⊙ of CSM. We place an upper limit of 0.04 M⊙ of 56Ni synthesized in the explosion. The host galaxy is a dwarf galaxy with a stellar mass of 107.34 M⊙ (implied metallicity of log(Z/Z⊙) ≈ 0.10) and integrated star-formation rate of log (SFR) = −2.20 M⊙ yr−1; both lower than 97 per cent of galaxies observed to produce core-collapse supernovae, although consistent with star-forming galaxies on the galaxy Main Sequence. The low CSM velocity, nickel and ejecta masses, and likely low-metallicity environment disfavour a single Wolf–Rayet progenitor star. Instead, a binary companion is likely required to adequately strip the progenitor and produce a low-velocity outflow.more » « less
-
ABSTRACT We present updated cosmological constraints from measurements of the gas mass fractions (fgas) of massive, dynamically relaxed galaxy clusters. Our new data set has greater leverage on models of dark energy, thanks to the addition of the Perseus cluster at low redshifts, two new clusters at redshifts z ≳ 1, and significantly longer observations of four clusters at 0.6 < z < 0.9. Our low-redshift (z < 0.16) fgas data, combined with the cosmic baryon fraction measured from the cosmic microwave background (CMB), imply a Hubble constant of h = 0.722 ± 0.067. Combining the full fgas data set with priors on the cosmic baryon density and the Hubble constant, we constrain the dark energy density to be ΩΛ = 0.865 ± 0.119 in non-flat Lambda cold dark matter (cosmological constant) models, and its equation of state to be $$w=-1.13_{-0.20}^{+0.17}$$ in flat, constant-w models, respectively 41 per cent and 29 per cent tighter than our previous work, and comparable to the best constraints available from other probes. Combining fgas, CMB, supernova, and baryon acoustic oscillation data, we also constrain models with global curvature and evolving dark energy. For the massive, relaxed clusters employed here, we find the scaling of fgas with mass to be consistent with a constant, with an intrinsic scatter that corresponds to just ∼3 per cent in distance.more » « less