Additive manufacturing has provided the ability to manufacture complex structures using a wide variety of materials and geometries. Structures such as triply periodic minimal surface (TPMS) lattices have been incorporated into products across many fields due to their unique combinations of mechanical, geometric, and physical properties. Yet, the near limitless possibility of combining geometry and material into these lattices leaves much to be discovered. This article provides a dataset of experimentally gathered tensile stress-strain curves and measured porosity values for 389 unique gyroid lattice structures manufactured using vat photopolymerization 3D printing. The lattice samples were printed from one of twenty different photopolymer materials available from either Formlabs, LOCTITE AM, or ETEC that range from strong and brittle to elastic and ductile and were printed on commercially available 3D printers, specifically the Formlabs Form2, Prusa SL1, and ETEC Envision One cDLM Mechanical. The stress-strain curves were recorded with an MTS Criterion C43.504 mechanical testing apparatus and following ASTM standards, and the void fraction or “porosity” of each lattice was measured using a calibrated scale. This data serves as a valuable resource for use in the development of novel printing materials and lattice geometries and provides insight into the influence of photopolymer material properties on the printability, geometric accuracy, and mechanical performance of 3D printed lattice structures. The data described in this article was used to train a machine learning model capable of predicting mechanical properties of 3D printed gyroid lattices based on the base mechanical properties of the printing material and porosity of the lattice in the research article [1].
more »
« less
Tensile testing data of additive manufactured ASTM D638 standard specimens with embedded internal geometrical features
Abstract Additive manufacturing (AM) is now widely used for research and industrial production. The benchmark data for mechanical properties of additively manufactured specimens is very useful for many communities. This data article presents a tensile testing dataset of ASTM D638 size specimens without and with embedded internal geometrical features printed using polylactic acid (PLA) in a Fused Filament Fabrication (FFF) additive manufacturing process. The added features can mimic defects of various shapes and sizes. This work is a supplement to the published research articleAssisted defect detection by in-process monitoring of additive manufacturing using optical imaging and infrared thermography(Additive Manufacturing, 2023, 103483). The printed specimens were tensile tested. Stress-strain graphs were developed and used to calculate the mechanical properties such as ultimate tensile strength (UTS) and strain at UTS. The mechanical properties, the correlations between mechanical properties and size, shape and location of geometrical features (defects), and the trends in mechanical properties can be useful in benchmarking the results of other researchers.
more »
« less
- Award ID(s):
- 2036802
- PAR ID:
- 10507653
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Beckwith, S.; Flinn, B.; Dustin, J. (Ed.)A novel additive manufacturing process utilizing the laminated object manufacturing (LOM) technology with woven natural fiber-reinforced biopolymer is investigated in this paper. Traditional synthetic composite materials are products from nonrenewable crude oil with limited end-of-life options, and therefore not environmentally friendly. The continuous woven natural fiber is used to significantly strengthen the mechanical properties of biocomposites and PLA biopolymer as the matrix made the material completely biodegradable. This is one of the promising replacements for synthetic composites in applications such as automotive panels, constructive materials, and sports and musical instruments. A LOM 3D printer prototype has been designed and built by the team using a laser beam in cutting the woven natural fiber reinforcement and molten PLA powder to bind layers together. Tensile and flexural properties of the LOM 3D printed biocomposites were measured using ASTM test standards and then compared with corresponding values measured from pure PLA specimens 3D printed through FDM. Improved mechanical properties from LOM 3D-printed biocomposites were identified by the team. SEM imaging was performed to identify the polymer infusing and fiber-matrix binding situations. This research took advantage of both the material and process’s benefits and combine them into one sustainable practice.more » « less
-
Wire arc additive manufacturing (WAAM) presents a highly promising alternative to conventional subtractive manufacturing methods to produce metallic components, particularly in the aerospace industry, where there is a demand for 17–4 precipitation-hardened (PH) stainless steel structures. This study focuses on investigating the microstructural characteristics, showing microhardness evaluations, and analyzing the tensile properties of the as-printed parts during the 17–4 PH manufacturing process at different locations and directions. The fabrication is carried out using gas metal wire arc additive manufacturing (GM-WAAM). As a result, it was found that the microstructure of the as-deposited part showed a complex configuration consisting of both finely equiaxed and coarsely formed δ-ferrite phases with vermicular and lathy morphologies. These phases were dispersed inside the martensitic matrix, while a small amount of retained austenite was also present. It was observed that the volume fraction of retained austenite (20–5%) and δ-ferrite phases (15.5–2.5%) decreased gradually from the bottom to the top of the as-deposited wall. This reduction in the fractions of these phases resulted in a progressive increase in both hardness (∼37%) and ultimate tensile strength (UTS) along the building direction. This study successfully fabricates a high-strength and ductile 17–4 PH as-printed part using WAAM. The findings provide evidence supporting the feasibility of employing WAAM for producing defect-free, high-strength components on a large scale while maintaining mechanical properties similar or better than wrought alloy 17–4 PH.more » « less
-
Selective laser melting (SLM) is one of the most widely used additive manufacturing technologies. Fabricating nickel-based superalloys with SLM has garnered significant interest from the industry and the research community alike due to the excellent high temperature properties and thermal stability exhibited by the alloys. Haynes-282 alloy, a γ′-phase strengthened Ni-based superalloy, has shown good high temperature mechanical properties comparable to alloys like R-41, Waspaloy, and 263 alloy but with better fabricability. A study and comparison of the effect of different heat-treatment routes on microstructure and mechanical property evolution of Haynes-282 fabricated with SLM is lacking in the literature. Hence, in this manuscript, a thorough investigation of microstructure and mechanical properties after a three-step heat treatment and hot isostatic pressing (HIP) has been conducted. In-situ heat-treatment experiments were conducted in a transmission electron microscopy (TEM) to study γ′ precipitate evolution. γ′ precipitation was found to start at 950 °C during in-situ heat-treatment. Insights from the in-situ heat-treatment were used to decide the aging heat-treatment for the alloy. The three-step heat-treatment was found to increase yield strength (YS) and ultimate tensile strength (UTS). HIP process enabled γ′ precipitation and recrystallization of grains of the as-printed samples in one single step.more » « less
-
Abstract Additive manufacturing, an innovative process that assembles materials layer by layer from 3D model data, is recognized as a transformative technology across diverse industries. Researchers have extensively investigated the impact of various printing parameters of 3D printing machines, such as printing speed, nozzle temperature, and infill, on the mechanical properties of printed objects. Specifically, this study focuses on applying Finite Element Analysis (FEA) in G code modification in Fused Deposition Modeling (FDM) 3D Printing. FDM involves extruding a thermoplastic filament in layers over a build plate to create a three-dimensional object. In the realm of load-bearing structures, the Finite Element Analysis (FEA) process is initiated on the target object, employing the primary load to identify areas with high-stress concentrations. Subsequently, optimization techniques are used to strategically assign printing parameter combinations to improve mechanical properties in potentially vulnerable regions. The ultimate objective is to tailor the G code, a set of instructions for the printer, to strengthen particular areas and improve the printed object’s overall structural integrity. To evaluate the suggested methodology’s efficacy, the study conducts a comprehensive analysis of printed objects, both with and without the optimized G code. Simultaneously, mechanical testing, such as tensile testing, demonstrates quantitative data on structural performance. This comprehensive analysis aims to identify the impact of G code alteration on the finished product. Preliminary experimental results using simple tensile specimens indicate notable improvements in structural performance. Importantly, these improvements are achieved without any discernible mass increase, optimizing material usage and reducing the cost of additive manufacturing. The modified G code targets to strengthen critical areas using updated printing parameters without a net increase in the overall material consumption of the object. This finding holds significant implications for industries reliant on additive manufacturing for load-bearing components, offering a promising avenue for improved efficiency and durability. Integrating advanced techniques, such as G code modification and finite element analysis (FEA), as the additive manufacturing landscape evolves presents a pathway toward optimizing mechanical properties. By contributing valuable insights and laying the groundwork for further exploration and refinement of these methodologies, this study paves the way for enhanced structural performance in various additive manufacturing applications. Ultimately, it encourages innovation and progress in the field, propelling the industry toward new heights of efficiency and reliability.more » « less
An official website of the United States government
