skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tensile performance data of 3D printed photopolymer gyroid lattices
Additive manufacturing has provided the ability to manufacture complex structures using a wide variety of materials and geometries. Structures such as triply periodic minimal surface (TPMS) lattices have been incorporated into products across many fields due to their unique combinations of mechanical, geometric, and physical properties. Yet, the near limitless possibility of combining geometry and material into these lattices leaves much to be discovered. This article provides a dataset of experimentally gathered tensile stress-strain curves and measured porosity values for 389 unique gyroid lattice structures manufactured using vat photopolymerization 3D printing. The lattice samples were printed from one of twenty different photopolymer materials available from either Formlabs, LOCTITE AM, or ETEC that range from strong and brittle to elastic and ductile and were printed on commercially available 3D printers, specifically the Formlabs Form2, Prusa SL1, and ETEC Envision One cDLM Mechanical. The stress-strain curves were recorded with an MTS Criterion C43.504 mechanical testing apparatus and following ASTM standards, and the void fraction or “porosity” of each lattice was measured using a calibrated scale. This data serves as a valuable resource for use in the development of novel printing materials and lattice geometries and provides insight into the influence of photopolymer material properties on the printability, geometric accuracy, and mechanical performance of 3D printed lattice structures. The data described in this article was used to train a machine learning model capable of predicting mechanical properties of 3D printed gyroid lattices based on the base mechanical properties of the printing material and porosity of the lattice in the research article [1].  more » « less
Award ID(s):
2022040
PAR ID:
10539624
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Data in Brief
Volume:
49
Issue:
C
ISSN:
2352-3409
Page Range / eLocation ID:
109396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advancements in additive manufacturing (AM) technology and three-dimensional (3D) modeling software have enabled the fabrication of parts with combinations of properties that were impossible to achieve with traditional manufacturing techniques. Porous designs such as truss-based and sheet-based lattices have gained much attention in recent years due to their versatility. The multitude of lattice design possibilities, coupled with a growing list of available 3D printing materials, has provided a vast range of 3D printable structures that can be used to achieve desired performance. However, the process of computationally or experimentally evaluating many combinations of base material and lattice design for a given application is impractical. This research proposes a framework for quickly predicting key mechanical properties of 3D printed gyroid lattices using information about the base material and porosity of the structure. Experimental data was gathered to train a simple, interpretable, and accurate kernel ridge regression machine learning model. The performance of the model was then compared to numerical simulation data and demonstrated similar accuracy at a fraction of the computation time. Ultimately, the model development serves as an advancement in ML-driven mechanical property prediction that can be used to guide extension of current and future models. 
    more » « less
  2. Triply periodic minimal surface lattices have mechanical properties that derive from the unit cell geometry and the base material. Through computation software like nTopology and Abaqus, these geometries are used to tune nonlinear stress–strain curves not readily achievable with solid materials alone and to change the compliance by two orders of magnitude compared to the constituent material. In this study, four elastomeric TPMS gyroids undergo large deformation compression and tension testing to investigate the impact of the structure's geometry on the mechanical properties. Among all the samples, the modulus at strainεvaries by over one order of magnitude (7.7–293.4 kPa from FEA under compression). These lattices are promising candidates for designing multifunctional systems that can perform multiple tasks simultaneously by leveraging the geometry's large surface area to volume ratio. For example, the architectural functionality of the lattice to bear loads and store mechanical energy along with the larger surface area for energy storage is combined. A compliant double‐gyroid capacitor that can simultaneously achieve three functions is demonstrated: load bearing, energy storage, and sensing. 
    more » « less
  3. The advent of additive manufacturing, i.e., 3D printing, has enabled the flexibility to realize complex shapes and structures, such as triply periodic minimal surface (TPMS) structures, which are desirable in many engineering applications due to their unique mechanics. Common applications include protective armor or structural reinforcement for military or civilian uses. In this report, three TPMS structures (gyroid, Schwarz diamond, and Schwarz primitive) were fabricated using a hyperelastic photocurable resin and vat photopolymerization (VPP) technique. Additional sets of the same structures were fabricated with geometrical porosity to ascertain the mechanical response of each porous structure as a function of different strain rates (quasi-static and low-velocity impact), i.e., the effect of higher surface area to volume ratio. The results showed that irrespective of geometry, including pores in the TPMS structures causes reduced stress and truncated strain levels achieved under quasi-static loading. Gyroid structures outperformed the other TPMS structures, resulting in higher deformation, irrespective of porosity level. Alternatively, the drop impact results indicated that adding porosity decreased the stress levels and extended the plateau region, achieving greater strains than neat resin structures. The effects of porosity and glass microballoon reinforcement were investigated under the same loading regimes for the gyroid structure. The response of the dual hybridized structures proved to increase the impact efficacy of the gyroid structures compared to all other variations investigated. The results of this paper indicate the potential of additively manufactured TPMS structures made of hyperelastic materials and decorated with stochastic pores for improved impact response. 
    more » « less
  4. Abstract Among the wide range of additive manufacturing — or “three-dimensional (3D) printing” — technologies, “material jetting” approaches are distinctively suited for multi-material fabrication. Because material jetting strategies, such as “PolyJet 3D printing”, harness inkjets that allow for multiple photopolymer droplets (and sacrificial support materials) to be dispensed in parallel to build 3D objects, distinct materials with unique properties can be readily unified in a single print akin to combining multiple-colored inks using a conventional 2D color printer. Although researchers have leveraged this multi-material capability to achieve, for example, 3D functionally graded and bi-material composite systems, there are cases in which the interface between distinct materials can become a key region of mechanical failure if not designed properly. To elucidate potential design factors that contribute to such failure modes, here we investigate the relationship between the interface design and tensile mechanical failure dynamics for PolyJet-printed bi-material coupons. Experimental results for a select set of bi-material sample designs that were 3D printed using a Stratasys Objet500 Connex3 PolyJet 3D printer and subjected to uniaxial tensile testing using a Tinius Olsen H25K-T benchtop universal testing machine under uniaxial strain revealed that increasing the surface contact area between two distinct materials via changes in geometric design does not necessarily increase the interface strength based on the length scales and loading conditions investigated in the current study and that further studies of the role of multi-material geometric designs in interface integrity are warranted to understand potential mechanisms underlying these results. Given the increasing interest in material jetting — and PolyJet 3D printing in particular — as a pathway to multi-material manufacturing in fields including robotics and fluidic circuitry, this study suggests that multi-material interface geometry should be considered appropriately for future applications. 
    more » « less
  5. Creating 3D printed structures from materials with shape memory properties allows these structures to change form, modifying configuration or function over time in response to external stimuli such as temperature, light, electrical current, etc. This area of additive manufacturing has come to be known as 4D printing. A variety of geometries have been previously explored in the context of 4D printing, including foldable surfaces (e.g. Origami), lattices, and bio-inspired shapes. However, with advances in solid modeling software tools, more sophisticated spatially- varying lattices are now easily generated to further optimize the mechanical performance and functionality of a 4D printed structure. In this work, complex lattices are created to bend at specific locations with intentionally-reduced stiffness and improved compliance based on locally-reduced strut dimensions. By experimentally demonstrating more complex geometries in the study of 4D printing, new applications can be considered that were not previously possible, with tailored performance allowing for balancing between weight and actuation. 
    more » « less