skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structure Directing Forces in Hybrid Layered Double Perovskites Containing Aromatic Organic Cations
Hybrid n = 1 Ruddlesden-Popper perovskites with aromatic ammonium cations like benzylammonium (BzA) and phenethylammonium (PEA) have been shown to adopt polar structures and exhibit ferroelectricity, but many of the examples discovered thus far contain either Pb or Cd. Here, we describe the synthesis and structural characteriza-tion of four layered halide double perovskites: (BzA)4AgBiBr8, (PEA)4AgBiBr8, (BzA)4AgInCl8, and (PEA)4AgInCl8. In all four compounds the inorganic layers exhibit a chessboard ordering of Ag+ and Bi3+/In3+ and the layers stack in a coherent pattern that maintains the ordering over three-dimensional space. The octahedra sur-rounding Ag+ show a large axial compression, which results in much shorter bonds to the terminal halide ions than to the bridging halide ions, whereas the bismuth- and indium-centered octahedra show only small distortions. There appears to be a competition between polar distortions of the octahedra and octahedral tilting, both of which can optimize hydrogen bonding interactions between the ammonium cations and the inorganic layers. Unlike the Pb- or Cd-containing analogs, the double perovskites seem to favor patterns of octahedral tilting that suppress po-lar ordering of the organic cations. The packing of the organic cations depends on both their conformational flexi-bility and the lateral dimensions of the inorganic layer. These forces favor intra-layer edge-to-face interaction be-tween aromatic rings in the three of the four compounds. The lone exception is (PEA)4AgBiBr8, which forms weak inter-layer edge-to-face interactions between aromatic rings and slip-stacked packing within each organic layer.  more » « less
Award ID(s):
2003793
PAR ID:
10507669
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Crystal Growth & Design
Volume:
24
Issue:
3
ISSN:
1528-7483
Page Range / eLocation ID:
1367 to 1379
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A symmetry mode analysis yields 47 symmetrically distinct patterns of octahedral tilting in hybrid organic–inorganic layered perovskites that adopt then= 1 Ruddlesden–Popper (RP) structure. The crystal structures of compounds belonging to this family are compared with the predictions of the symmetry analysis. Approximately 88% of the 140 unique structures have symmetries that agree with those expected based on octahedral tilting alone, while the remaining compounds have additional structural features that further lower the symmetry, such as asymmetric packing of bulky organic cations, distortions of metal-centered octahedra or a shift of the inorganic layers that deviates from thea/2 +b/2 shift associated with the RP structure. The structures of real compounds are heterogeneously distributed amongst the various tilt systems, with only 9 of the 47 tilt systems represented. No examples of in-phase ψ-tilts about theaand/orbaxes of the undistorted parent structure were found, while at the other extreme ∼66% of the known structures possess a combination of out-of-phase ϕ-tilts about theaand/orbaxes and θ-tilts (rotations) about thecaxis. The latter combination leads to favorable hydrogen bonding interactions that accommodate the chemically inequivalent halide ions within the inorganic layers. In some compounds, primarily those that contain either Pb2+or Sn2+, favorable hydrogen bonding interactions can also be achieved by distortions of the octahedra in combination with θ-tilts. 
    more » « less
  2. Not AvailableTwo-dimensional halide perovskites (2D-HPs) are of significant interest for their applications in optoelectronic devices. Part of this increased interest in 2D-HPs stems from their increased stability relative to their 3D counterparts. Here, the origin of higher stability in 2D-HPs is mainly attributed to the bulky ammonium cation layers, which can act as a blocking layer against moisture and oxygen ingression and ion diffusion. While 2D-HPs have demonstrated increased stability, it is not clear how the structure of the ammonium ion impacts the material stability. Herein, we investigate how the structure of ammonium cations, including three n-alkyl ammoniums, phenethylammonium (PEA) and five PEA derivatives, anilinium (An), benzylammonium (BzA), and cyclohexylmethyl ammonium (CHMA), affects the crystal structure and air, water, and oxygen stability of 2D tin halide perovskites (2D-SnHPs). We find that stability is influenced by several factors, including the molecular packing and intermolecular interactions in the organic layer, steric effects around the ammonium group, the orientation distribution of the 2D sheets, and the hydrophobicity of the perovskite film surface. With superior hydrophobicity, strong interactions between organic layers, and a high extent of parallel oriented inorganic sheets, the 2-(4-trifluoromethyl-phenyl)-ethylammonium (4-TFMPEA) ion forms the most stable 2D-SnHP among the 12 ammonium cations investigated. 
    more » « less
  3. Abstract Two-dimensional (2D) hybrid metal halide perovskites have emerged as outstanding optoelectronic materials and are potential hosts of Rashba/Dresselhaus spin-splitting for spin-selective transport and spin-orbitronics. However, a quantitative microscopic understanding of what controls the spin-splitting magnitude is generally lacking. Through crystallographic and first-principles studies on a broad array of chiral and achiral 2D perovskites, we demonstrate that a specific bond angle disparity connected with asymmetric tilting distortions of the metal halide octahedra breaks local inversion symmetry and strongly correlates with computed spin-splitting. This distortion metric can serve as a crystallographic descriptor for rapid discovery of potential candidate materials with strong spin-splitting. Our work establishes that, rather than the global space group, local inorganic layer distortions induced via appropriate organic cations provide a key design objective to achieve strong spin-splitting in perovskites. New chiral perovskites reported here couple a sizeable spin-splitting with chiral degrees of freedom and offer a unique paradigm of potential interest for spintronics. 
    more » « less
  4. The synthesis, crystal structures, and optical properties of four ternary and six quaternary halides containing the Rh3+ ion are reported here. Rb3RhCl6 adopts a monoclinic structure with isolated [RhCl6]3− octahedra. Rb3Rh2Cl9, Cs3Rh2Cl9, and Cs3Rh2Br9 crystallize in a vacancy ordered variant of the 6H hexagonal perovskite structure, which contains isolated Rh2X93− (X = Cl, Br) dimers of face-sharing octahedra. Cs2AgRhCl6 and Cs2NaRhCl6 adopt the 12R rhombohedral perovskite structure, featuring [M2RhCl12]7− face-sharing octahedral trimers, connected to one another through rhodium-centered octahedra. A4AgRhCl8 and A4AgRhBr8 (A = CH3CH2CH2CH2NH3+, (CH3)2CHCH2CH2NH3)+) crystallize in a cation-ordered variant of the n = 1 Ruddlesden Popper structure, which features layers of corner-connected octahedra with a chessboard ordering of Ag+ and Rh3+ ions separated by double layers of organic cations. The diffuse reflectance spectra of all compositions studied feature peaks in the visible that can be attributed to spin-allowed d-to-d transitions and peaks in the UV that arise from charge transfer transitions. Electronic structure calculations reveal moderate Rh–X–Ag hybridization when rhodium- and silver-centered octahedra share corners, but minimal hybridization when they share faces. Many of the compositions studied have an electronic structure that is effectively zero-dimensional, but Cs2AgRhCl6 is found to possess a two-dimensional electronic structure. The results are instructive for controlling the electronic dimensionality of compositionally complex halide perovskite derivatives. 
    more » « less
  5. Abstract 2D perovskites are recently attracting a significant amount of attention, mainly due to their improved stability compared with their 3D counterpart, e.g., the archetypical MAPbI3. Interestingly, the first studies on 2D perovskites can be dated back to the 1980s. The most popular 2D perovskites have a general formula of (RNH3)2MAn−1MnX3n+1, wherenrepresents the number of metal halide octahedrons between the insulating organic cation layers. The optoelectronic properties of 2D perovskites, e.g., band gap, are highly dependent on the thickness of the inorganic layers (i.e., the value ofn). Herein, 2D perovskites are arbitrarily divided into three classes, strict 2D (n= 1), quasi‐2D (n= 2–5), and quasi‐3D (n> 5), and research progress is summarized following this classification. The majority of existing 2D perovskites only employ very simple organic cations (e.g., butyl ammonium or phenylethyl ammonium), which merely function as the supporting layer/insulating barrier to achieve the 2D structure. Thus, a particularly important research question is: can functional organic cations be designed for these 2D perovskites, where these functional organic cations would play an important role in dictating the optoelectronic properties of these organic–inorganic hybrid materials, leading to unique device performance or applications? 
    more » « less