Abstract In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications.
more »
« less
Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites
Abstract Two-dimensional (2D) hybrid metal halide perovskites have emerged as outstanding optoelectronic materials and are potential hosts of Rashba/Dresselhaus spin-splitting for spin-selective transport and spin-orbitronics. However, a quantitative microscopic understanding of what controls the spin-splitting magnitude is generally lacking. Through crystallographic and first-principles studies on a broad array of chiral and achiral 2D perovskites, we demonstrate that a specific bond angle disparity connected with asymmetric tilting distortions of the metal halide octahedra breaks local inversion symmetry and strongly correlates with computed spin-splitting. This distortion metric can serve as a crystallographic descriptor for rapid discovery of potential candidate materials with strong spin-splitting. Our work establishes that, rather than the global space group, local inorganic layer distortions induced via appropriate organic cations provide a key design objective to achieve strong spin-splitting in perovskites. New chiral perovskites reported here couple a sizeable spin-splitting with chiral degrees of freedom and offer a unique paradigm of potential interest for spintronics.
more »
« less
- Award ID(s):
- 1729297
- PAR ID:
- 10287854
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Translation of chirality and asymmetry across structural motifs and length scales plays a fundamental role in nature, enabling unique functionalities in contexts ranging from biological systems to synthetic materials. Here, we introduce a structural chirality transfer across the organic–inorganic interface in two-dimensional hybrid perovskites using appropriate chiral organic cations. The preferred molecular configuration of the chiral spacer cations,R-(+)- orS-(−)-1-(1-naphthyl)ethylammonium and their asymmetric hydrogen-bonding interactions with lead bromide-based layers cause symmetry-breaking helical distortions in the inorganic layers, otherwise absent when employing a racemic mixture of organic spacers. First-principles modeling predicts a substantial bulk Rashba-Dresselhaus spin-splitting in the inorganic-derived conduction band with opposite spin textures betweenR- andS-hybrids due to the broken inversion symmetry and strong spin-orbit coupling. The ability to break symmetry using chirality transfer from one structural unit to another provides a synthetic design paradigm for emergent properties, including Rashba-Dresselhaus spin-polarization for hybrid perovskite spintronics and related applications.more » « less
-
Abstract The two-dimensional (2D) Ruddlesden−Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic band structure. Upon breaking the inversion symmetry, a spin splitting (‘Rashba splitting’) occurs in the electronic bands. We have studied the spin splitting in 2D-PEPI single crystals using the circular photogalvanic effect (CPGE). We confirm the existence of Rashba splitting at the electronic band extrema of 35±10 meV, and identify the main inversion symmetry breaking direction perpendicular to the MQW planes. The CPGE action spectrum above the bandgap reveals spin-polarized photocurrent generated by ultrafast relaxation of excited photocarriers separated in momentum space. Whereas the helicity dependent photocurrent with below-gap excitation is due to spin-galvanic effect of the ionized spin-polarized excitons, where spin polarization occurs in the spin-split bands due to asymmetric spin-flip.more » « less
-
Hybrid organic–inorganic perovskites (HOIPs) have emerged as a promising class of materials for optoelectronic and spintronic applications. Layered two-dimensional (2D) HOIP variants have received considerable attention, primarily due to their unique properties that can be modulated through the tailored selection of both organic and inorganic components. The spin splitting in the band structure due to the strong spin–orbit coupling is one of the most intriguing properties of such 2D HOIPs materials for their potential utility in spintronics. In addition to observing the spin splitting in equilibrium due to the non-centrosymmetric structure, the possibility of having dynamic spin splitting at room temperature of the otherwise centrosymmetric systems has become a topic of great debate. While modern first-principles molecular dynamics (FPMD) simulation is able to address such a question in principle by taking into account the lattice anharmonicity in electronic structure calculation, the finite-size error poses a great challenge in practice. In this work, we employ a machine learning (ML) model to overcome this practical limitation to investigate the dynamic spin splitting in phenylethyl ammonium lead iodide 2D HOIP. Specifically, we use the deep potential molecular dynamics approach [Zeng et al., J. Chem. Phys. 159(5), 054801 (2023)] for ML FPMD simulation, and we also develop a surrogate model for predicting the spin splitting based on the recent finding that relates the spin splitting to structural descriptors in 2D HOIPs. Our work shows that even in globally centrosymmetric structures, the inclusion of lattice anharmonicity can induce dynamic spin splitting at room temperature.more » « less
-
Abstract Metal‐halide perovskites are known for their strong and tunable luminescence. However, the synthesis of perovskite‐based particles with circularly polarized light emission (CPLE) remains challenging due to the complex interplay of metal‐ligand chemistries, crystallization patterns, and chirality transfer mechanisms. Achiral perovskites can be deposited on chiral “hedgehog” particles (CHIPs) with twisted spikes, producing chiroptically active materials with spectroscopic bands specific to the perovskite and chirality specific to the template CHIPs. Left‐ and right‐handed CPLE is engineered into complex particles comprised of a layer of perovskite deposited onto CHIPs coated with an intermediate silica layer. The spectral position of chiroptical bands, the optical asymmetryg‐factors, and single‐particle circularly polarized microscopy indicate that the observed CPLE is dominated by the post‐emission scattering from the twisted spikes of the parent particle. Templating luminescent nanofilms on CHIPs provides a simple pathway to a wide range of complex chiroptical materials; the dispersibility of the CHIPs in various solvents and the tunability of their chiral geometry enable their applications as single‐particle emitters with strong and controllable polarization rotation.more » « less
An official website of the United States government
