skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A novel larval diet interacts with nutritional stress to modify juvenile behaviors and glucocorticoid responses
Abstract Developmental plasticity can allow the exploitation of alternative diets. While such flexibility during early life is often adaptive, it can leave a legacy in later life that alters the overall health and fitness of an individual. Species of the spadefoot toad genusSpeaare uniquely poised to address such carryover effects because their larvae can consume drastically different diets: their ancestral diet of detritus or a derived shrimp diet. Here, we useSpeabombifronsto assess the effects of developmental plasticity in response to larval diet type and nutritional stress on juvenile behaviors and stress axis reactivity. We find that, in an open‐field assay, juveniles fed shrimp as larvae have longer latencies to move, avoid prey items more often, and have poorer prey‐capture abilities. While juveniles fed shrimp as larvae are more exploratory, this effect disappears if they also experienced a temporary nutritional stressor during early life. The larval shrimp diet additionally impairs juvenile jumping performance. Finally, larvae that were fed shrimp under normal nutritional conditions produce juveniles with higher overall glucocorticoid levels, and larvae that were fed shrimp and experienced a temporary nutritional stressor produce juveniles with higher stress‐induced glucocorticoid levels. Thus, while it has been demonstrated that consuming the novel, alternative diet can be adaptive for larvae in nature, doing so has marked effects on juvenile phenotypes that may recalibrate an individual's overall fitness. Given that organisms often utilize diverse diets in nature, our study underscores the importance of considering how diet type interacts with early‐life nutritional adversity to influence subsequent life stages.  more » « less
Award ID(s):
1754136
PAR ID:
10449456
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
11
Issue:
16
ISSN:
2045-7758
Page Range / eLocation ID:
p. 10880-10891
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, Apis mellifera, nurse bees provision food to developing larvae, directly moderating growth rates and caste development. However, the eusocial nature of honey bees makes nutritional studies challenging, because diet components cannot be systematically manipulated in the hive. Using in vitro rearing, we investigated the roles and interactions between carbohydrate and protein content on larval survival, growth, and development in A. mellifera. We applied a geometric framework to determine how these two nutritional components interact across nine artificial diets. Honey bees successfully completed larval development under a wide range of protein and carbohydrate contents, with the medium protein (∼5%) diet having the highest survival. Protein and carbohydrate both had significant and non-linear effects on growth rate, with the highest growth rates observed on a medium-protein, low-carbohydrate diet. Diet composition did not have a statistically significant effect on development time. These results confirm previous findings that protein and carbohydrate content affect the growth of A. mellifera larvae. However, this study identified an interaction between carbohydrate and protein content that indicates a low-protein, high-carb diet has a negative effect on larval growth and survival. These results imply that worker recruitment in the hive would decline under low protein conditions, even when nectar abundance or honey stores are sufficient. 
    more » « less
  2. Abstract Parental exposure to environmental stress can influence phenotypic plasticity by offspring developing under that stressor. Transgenerational effects may also reshape natural selection on developmental plasticity by influencing its fitness consequences and expression of its genetic variation. We tested these hypotheses in the purple sea urchinStrongylocentrotus purpuratus, an invertebrate exposed to coastal upwelling (periods of low temperature and pH impacting biomineralization and performance). We conditioned parents and larvae to experimental upwelling and integrated RNA-seq, phenotyping of body size and biomineralization, and measured fitness-correlated traits in a quantitative genetic experiment. Larvae developing under upwelling induced widespread differential expression (DE), decreased biomineralization, and reduced body size. We detected fitness benefits for increased biomineralization and reduced size under upwelling indicative of adaptive plasticity, but only when larvae were spawned from parents exposed to upwelling. Larval DE was largely associated with adaptive phenotypic plasticity. Negative genetic correlation in DE was abundant between genes associated with adaptive plasticity. However, genetic correlations in DE associated with body size plasticity were significantly more positive in larvae from upwelling-exposed parents. These results show that transgenerational effects modify the fitness landscape and genetic architecture of phenotypic plasticity and its regulatory pathways. 
    more » « less
  3. Rising atmospheric CO 2 reduces seawater pH causing ocean acidification (OA). Understanding how resilient marine organisms respond to OA may help predict how community dynamics will shift as CO 2 continues rising. The common slipper shell snail Crepidula fornicata is a marine gastropod native to eastern North America that has been a successful invader along the western European coastline and elsewhere. It has also been previously shown to be resilient to global change stressors. To examine the mechanisms underlying C. fornicata’s resilience to OA, we conducted two controlled laboratory experiments. First, we examined several phenotypes and genome-wide gene expression of C. fornicata in response to pH treatments (7.5, 7.6, and 8.0) throughout the larval stage and then tested how conditions experienced as larvae influenced juvenile stages (i.e., carry-over effects). Second, we examined genome-wide gene expression patterns of C. fornicata larvae in response to acute (4, 10, 24, and 48 h) pH treatment (7.5 and 8.0). Both C. fornicata larvae and juveniles exhibited resilience to OA and their gene expression responses highlight the role of transcriptome plasticity in this resilience. Larvae did not exhibit reduced growth under OA until they were at least 8 days old. These phenotypic effects were preceded by broad transcriptomic changes, which likely served as an acclimation mechanism for combating reduced pH conditions frequently experienced in littoral zones. Larvae reared in reduced pH conditions also took longer to become competent to metamorphose. In addition, while juvenile sizes at metamorphosis reflected larval rearing pH conditions, no carry-over effects on juvenile growth rates were observed. Transcriptomic analyses suggest increased metabolism under OA, which may indicate compensation in reduced pH environments. Transcriptomic analyses through time suggest that these energetic burdens experienced under OA eventually dissipate, allowing C. fornicata to reduce metabolic demands and acclimate to reduced pH. Carry-over effects from larval OA conditions were observed in juveniles; however, these effects were larger for more severe OA conditions and larvae reared in those conditions also demonstrated less transcriptome elasticity. This study highlights the importance of assessing the effects of OA across life history stages and demonstrates how transcriptomic plasticity may allow highly resilient organisms, like C. fornicata , to acclimate to reduced pH environments. 
    more » « less
  4. Intraspecific competition has long been considered a key driver of evolutionary diversification, but whether it can also promote evolutionary innovation is less clear. We examined the interplay between competition and phenotypic plasticity in fueling the origins of a novel, complex phenotype––a distinctive carnivore morph found in spadefoot toad tadpoles (genus Spea) that specializes on fairy shrimp. We specifically sought to explore the possible origins of this phenotype by providing shrimp to Scaphiopus holbrookii tadpoles (the sister genus to Spea that does not produce carnivores) while subjecting them to competition for their standard diet of detritus. Previous research had shown that this species will eat shrimp when detritus is limited, and that these shrimp-fed individuals produce features that are redolent of a rudimentary Spea carnivore. In this study, we found that: 1) behavioral and morphological plasticity enabled some individuals to expand their diet to include shrimp; 2) there was heritable variation in this plasticity; and 3) individuals received a growth and development benefit by eating shrimp. Thus, novel resource use can arise via plasticity as an adaptive response to intraspecific competition. More generally, our results show how competition and plasticity may interact to pave the way for the evolution of complex, novel phenotypes, such as the distinctive carnivore morph in present-day Spea. 
    more » « less
  5. Developmental plasticity can occur at any life stage, but plasticity that acts early in development may give individuals a competitive edge later in life. Here, we asked if early (pre-feeding) exposure to a nutrient-rich resource impacts hatchling morphology in Mexican spadefoot toad tadpoles, Spea multiplicata . A distinctive carnivore morph can be induced when tadpoles eat live fairy shrimp. We investigated whether cues from shrimp––detected before individuals are capable of feeding––alter hatchling morphology such that individuals could potentially take advantage of this nutritious resource once they begin feeding. We found that hatchlings with early developmental exposure to shrimp were larger and had larger jaw muscles––traits that, at later stages, increase a tadpole's competitive ability for shrimp. These results suggest that early developmental stages can assess and respond to environmental cues by producing resource-use phenotypes appropriate for future conditions. Such anticipatory plasticity may be an important but understudied form of developmental plasticity. 
    more » « less