Abstract Microstructurally small fatigue‐crack growth in polycrystalline materials is highly three‐dimensional due to sensitivity to local microstructural features (e.g., grains). One requirement for modeling microstructurally sensitive crack propagation is establishing the criteria that govern crack evolution, including crack deflection. Here, a high‐fidelity finite‐element modeling framework is used to assess the performance and validity of various crack‐growth criteria, including slip‐based metrics (e.g., fatigue‐indicator parameters), as potential criteria for predicting three‐dimensional crack paths in polycrystalline materials. The modeling framework represents cracks as geometrically explicit discontinuities and involves voxel‐based remeshing, mesh‐gradation control, and a crystal‐plasticity constitutive model. The predictions are compared to experimental measurements of WE43 magnesium samples subject to fatigue loading, for which three‐dimensional grain structures and fatigue‐crack surfaces were measured post‐mortem using near‐field high‐energy x‐ray diffraction microscopy and x‐ray computed tomography. Findings from this work are expected to improve the predictive capabilities of simulations involving microstructurally small fatigue‐crack growth in polycrystalline materials.
more »
« less
Passive atomic-scale optical sensors for mapping light flux in ultra-small cavities
Abstract Understanding light propagation and attenuation in cavities is limited by lack of applicable light sensing technologies. Here we demonstrate the use of light-sensitive metastable states in wide bandgap aluminosilicates (feldspar) as passive optical sensors for high-resolution mapping of light flux. We develop non-destructive, infrared photoluminescence (IRPL) imaging of trapped electrons in cracks as thin as 50 µm width to determine the spatio-temporal evolution of light sensitive metastable states in response to light exposure. Modelling of these data yields estimates of relative light flux at different depths along the crack surfaces. Contrary to expectation, the measured light flux does not scale with the crack width, and it is independent of crack orientation suggesting the dominance of diffused light propagation within the cracks. This work paves way for understanding of how light attenuates in the minutest of cavities for applications in areas as diverse as geomorphology, biology/ecology and civil engineering.
more »
« less
- Award ID(s):
- 1839148
- PAR ID:
- 10507723
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For a thin layer of elastomer sandwiched between two rigid blocks, when the blocks are pulled, numerous cavities grow in the elastomer like cracks. Why does the elastomer grow numerous small cracks instead of a single large crack? Here we answer this question by analyzing an idealized model, in which the elastomer is an incompressible neoHookean material and contains a penny-shaped crack. To simulate one representative crack among many, the model is axisymmetric with zero radial displacement at the edge. When the rigid blocks are pulled by a pair of forces, a hydrostatic tension develops in the elastomer. At a critical hydrostatic tension, a small crack deforms substantially, as predicted by an elastic instability, resulting in an unbounded energy release rate. Consequently, the small crack initiates its growth, regardless of the toughness of the elastomer. As the crack grows, the energy release rate decreases, so that the crack arrests. Meanwhile, the rigid blocks constrain deformation of the elastomer far away from the crack, where hydrostatic tension remains high, allowing other cracks to grow. For an elastomer of thickness H, shear modulus , and toughness , the crack radius and spacing decrease as the normalized toughness increases. Therefore, a tough elastomer of small modulus and thickness will grow numerous small cracks when confined by two rigid blocks and pulled beyond a critical force.more » « less
-
ABSTRACT:The mechanism of formation of natural cracks in sedimentary rocks in the geologic past is an important problem in hydraulic fracturing. Why are the natural cracks roughly parallel and equidistant, and why is the spacing in the order of 10 cm rather than 1 cm or 100 cm? Fracture mechanics alone cannot answer these questions. Here it is proposed that fracture mechanics must be coupled with the diffusion of solute ions (Na+ and Cl− are considered here), driven by an osmotic pressure gradient. Parallel equidistant cracks are considered to be subcritical and governed by the Charles-Evans law. The evolution in solute concentration also affects the solvent pressure in the pores and cracks, altering the resistance to frictional sliding. Only steady-state propagation and periodic cracks are studied. An analytical solution of the crack spacing as a function of the properties of the rock as well as the solvent and solute, and the imposed far-field deformation is obtained. Finally, the stability of the growth of parallel cracks is proven by examining the second variation of free energy. Stability of the periodic growth state is also considered. 1 INTRODUCTIONThe deep layers of sedimentary rocks such as shale and sandstone are usually intersected by systems of nearly parallel natural cracks either filled by mineral deposits or closed by creep over a million year life span. Their spacing is roughly uniform and is on the order of 0.1 m (rather than 1 m or 0.01m). These cracks likely play an important role in hydraulic fracturing for gas or oil recovery (aka fracking, fraccing or frac) (Rahimi-Aghdam et al., 2019, e.g.). Therefore, understanding the mechanism of their formation in the distant geologic past is of interest.What controls the spacing of the nearly parallel cracks in shale? According to the fracture mechanics alone, the crack spacing is arbitrary. If propagating parallel equidistant cracks are in a critical state, stability analysis shows that many cracks would have to stop growing, causing a great increase of their average spacing, which was obviously not the case (Bažant et al., 2014).more » « less
-
SUMMARY Long-period seismic events (LPs) are observed within active volcanoes, hydrothermal systems and hydraulic fracturing. The prevailing model for LP seismic events suggests that they result from pressure disturbances in fluid-filled cracks that generate slow, dispersive waves known as Krauklis waves. These waves oscillate within the crack, causing it to act as a seismic resonator whose far-field radiations are known as LP events. Since these events are generated from fluid-filled cracks, they have been used to analyse fluid transport and fracturing in geological settings. Additionally, they are deemed precursors to volcanic eruptions. However, other mechanisms have been proposed to explain LP seismicity. Thus, a robust interpretation of these events requires understanding all parameters contributing to LP seismicity. To achieve this, for the first time, we have developed a physical model to investigate LP seismicity under controlled-source conditions. The physical model consists of a 30 cm × 15 cm × 0.2 cm crack embedded within a concrete slab with dimensions of 3 m × 3 m × 0.24 m. Using this apparatus, we investigate fundamental factors affecting long-period seismic signals, including crack stiffness, fluid density and viscosity, radiation patterns and triggering location. Our findings are consistent with the theoretical model for Krauklis waves within a fluid-filled crack. In this study, we examine the interplay between fluid properties and characteristics of waves within and radiated from the crack model. Records from a pressure transducer within the crack model have the same frequency characteristics as the surface sensors, indicating that the surface sensors are recording the crack waves. Because the crack stiffness parameters for all the fluids are relatively high, fluid density variations have a larger effect on the crack wave frequency, with higher density fluids yielding lower resonance frequencies. Similarly, the quality factor (Q) decreases with increasing fluid density. We also find that an increase in fluid viscosity along with the increased fluid density results in a decrease in resonance frequency and Q. Trigger locations at the middle of the crack length and width most effectively resonated the first and second transverse modes. Thus, this physical model can offer new horizons in understanding LP seismicity and bridge the gap between theoretical models and observed LP signals.more » « less
-
Abstract The atomic‐scale cracking mechanism in clay is vital in discovering the cracking mechanism of clay at the continuum scale in that clay is a nanomaterial. In this article, we investigate mechanisms of modes I and II crack propagations in pyrophyllite and Ca‐montmorillonite with water adsorption through reactive molecular dynamics (MD) with a bond‐order force field. Clay water adsorption is considered by adding water molecules to the clay surface. During the equilibration stage, water adsorption could cause bending deformation of the predefined edge crack region. The relatively small orientating angle of water molecules indicates the formation of hydrogen bonds in the crack propagation process. The peak number density of adsorbed water decreases with the increasing strains. The atomistic structure evolution of the crack tip under loading is analyzed to interpret the nanoscale crack propagation mechanism. The numerical results show that the crack tip first gets blunted with a significant increase in the radius of the curvature of the crack tip and a slight change in crack length. The crack tip blunting is studied by tracking the crack tip opening distance and O–Si–O angle in the tetrahedral Si–O cell in modes I and II cracks. We compare bond‐breaking behaviors between Al–O and Si–O. It is found that Si–O bond breaking is primarily responsible for crack propagation. The critical stress intensity factor and critical energy release rate are determined from MD simulation results.more » « less
An official website of the United States government

