Turbulent boundary layers are dominated by large-scale motions (LSMs) of streamwise momentum surplus and deficit that contribute significantly to the statistics of the flow. In particular, the high-momentum LSMs residing in the outer region of the boundary layer have the potential to re-energize the flow and delay separation if brought closer to the wall. This work explores the effect of selectively manipulating LSMs in a moderate Reynolds number turbulent boundary layer for separation delay via well-resolved large-eddy simulations. Toward that goal, a model predictive control scheme is developed based on a reduced-order model of the flow that directs LSMs of interest closer to the wall in an optimal way via a body force-induced downwash. The performance improvement achieved by targeting LSMs for separation delay, compared to a naive actuation scheme that does not account for the presence of LSMs, is demonstrated.
more »
« less
Generation of Hairpin vortices using a hybrid physic-cyber data assimilation approach
Turbulent boundary layers are largely influenced by spatiotemporally developing coherent structures known as Large-Scale Motions (LSMs). This work examines the idea of creating synthetic hairpin trains, a model for LSMs, generated in a nominal zero pressure gradient laminar boundary layer. The study investigates the agreement between the experimentally measured flow field and the hairpin vortices and its simulated counterpart with a hybrid 2D inlet region. This approach uses time-varying unsteady spatially discrete velocity data obtained through experiments as an inflow boundary condition to the direct numerical simulation (DNS). A pre-processing divergence correction and interpolation scheme is employed to convert experimental data into a format better suited for the DNS. The matching is done by recreating a downstream flow using this hybrid physio-cyber approach. This method demonstrates the capability to produce a sequence of hairpins even with a simple 2D planar coarse dataset. A satisfactory qualitative and quantitative agreement was evident when comparing Q-criterion iso-surfaces of instantaneous DNS and phase-locked experimental data. The results of this study not only demonstrate the efficacy of the proposed approach in recreating LSMs but also suggest its applicability to future hybrid experimental-DNS flow control studies.
more »
« less
- Award ID(s):
- 2129494
- PAR ID:
- 10507729
- Publisher / Repository:
- AIAA
- Date Published:
- Journal Name:
- AIAA Scitech 2024
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study investigates the influence of planetary boundary layer (PBL) schemes and land surface models (LSMs) on the performance of the Weather Research & Forecasting model in simulating the development of downslope windstorms in the lee of the Santa Ynez Mountains in Santa Barbara, California (known as Sundowner winds). Using surface stations, a vertical wind profiler, and a multi-physics ensemble approach, we found that most of the wind speed biases are controlled by the roughness length z 0 , and so by the choice of LSM. While timing characteristics of Sundowners are insensitive to both LSM and PBL schemes, a clear sensitivity in the horizontal extent of strong surface winds is found for both PBL parameterization and z 0 , which are related to patterns of self-induced wave-breaking near the mountaintop, and the erosion of the marine layer. These results suggest that LSMs with relatively high values of z 0 , and TKE-based or hybrid PBL schemes adequately simulate downslope windstorms in the lee of mountain ranges, specifically in areas where downslope windstorms interact with the marine boundary layer with stably stratified characteristics.more » « less
-
Abstract High fidelity near-wall velocity measurements in wall bounded fluid flows continue to pose a challenge and the resulting limitations on available experimental data cloud our understanding of the near-wall velocity behavior in turbulent boundary layers. One of the challenges is the spatial averaging and limited spatial resolution inherent to cross-correlation-based particle image velocimetry (PIV) methods. To circumvent this difficulty, we implement an explicit no-slip boundary condition in a wavelet-based optical flow velocimetry (wOFV) method. It is found that the no-slip boundary condition on the velocity field can be implemented in wOFV by transforming the constraint to the wavelet domain through a series of algebraic linear transformations, which are formulated in terms of the known wavelet filter matrices, and then satisfying the resulting constraint on the wavelet coefficients using constrained optimization for the optical flow functional minimization. The developed method is then used to study the classical problem of a turbulent channel flow using synthetic data from a direct numerical simulation (DNS) and experimental particle image data from a zero pressure gradient, high Reynolds number turbulent boundary layer. The results obtained by successfully implementing the no-slip boundary condition are compared to velocity measurements from wOFV without the no-slip condition and to a commercial PIV code, using the velocity from the DNS as ground truth. It is found that wOFV with the no-slip condition successfully resolves the near-wall profile with enhanced accuracy compared to the other velocimetry methods, as well as other derived quantities such as wall shear and turbulent intensity, without sacrificing accuracy away from the wall, leading to state of the art measurements in the region of the turbulent boundary layer when applied to experimental particle images.more » « less
-
We employ numerically implicit subgrid-scale modeling provided by the well-known streamlined upwind/Petrov–Galerkin stabilization for the finite element discretization of advection–diffusion problems in a Large Eddy Simulation (LES) approach. Whereas its original purpose was to provide sufficient algorithmic dissipation for a stable and convergent numerical method, more recently, it has been utilized as a subgrid-scale (SGS) model to account for the effect of small scales, unresolvable by the discretization. The freestream Mach number is 2.5, and direct comparison with a DNS database from our research group, as well as with experiments from the literature of adiabatic supersonic spatially turbulent boundary layers, is performed. Turbulent inflow conditions are generated via our dynamic rescaling–recycling approach, recently extended to high-speed flows. Focus is given to the assessment of the resolved Reynolds stresses. In addition, flow visualization is performed to obtain a much better insight into the physics of the flow. A weak compressibility effect is observed on thermal turbulent structures based on two-point correlations (IC vs. supersonic). The Reynolds analogy (u′ vs. t′) approximately holds for the supersonic regime, but to a lesser extent than previously observed in incompressible (IC) turbulent boundary layers, where temperature was assumed as a passive scalar. A much longer power law behavior of the mean streamwise velocity is computed in the outer region when compared to the log law at Mach 2.5. Implicit LES has shown very good performance in Mach 2.5 adiabatic flat plates in terms of the mean flow (i.e., Cf and UVD+). iLES significantly overpredicts the peak values of u′, and consequently Reynolds shear stress peaks, in the buffer layer. However, excellent agreement between the turbulence intensities and Reynolds shear stresses is accomplished in the outer region by the present iLES with respect to the external DNS database at similar Reynolds numbers.more » « less
-
We present a combined experimental and theoretical study of the primary and secondary instabilities in a Kolmogorov-like flow. The experiment uses electromagnetic forcing with an approximately sinusoidal spatial profile to drive a quasi-two-dimensional (Q2D) shear flow in a thin layer of electrolyte suspended on a thin lubricating layer of a dielectric fluid. Theoretical analysis is based on a two-dimensional (2D) model (Suri et al. , Phys. Fluids , vol. 26 (5), 2014, 053601), derived from first principles by depth-averaging the full three-dimensional Navier–Stokes equations. As the strength of the forcing is increased, the Q2D flow in the experiment undergoes a series of bifurcations, which is compared with results from direct numerical simulations of the 2D model. The effects of confinement and the forcing profile are studied by performing simulations that assume spatial periodicity and strictly sinusoidal forcing, as well as simulations with realistic no-slip boundary conditions and an experimentally validated forcing profile. We find that only the simulation subject to physical no-slip boundary conditions and a realistic forcing profile provides close, quantitative agreement with the experiment. Our analysis offers additional validation of the 2D model as well as a demonstration of the importance of properly modelling the forcing and boundary conditions.more » « less
An official website of the United States government

