skip to main content

This content will become publicly available on February 9, 2025

Title: RoSI: A Model for Predicting Robot Social Influence

A wide range of studies in Human-Robot Interaction (HRI) has shown that robots can influence the social behavior of humans. This phenomenon is commonly explained by the Media Equation. Fundamental to this theory is the idea that when faced with technology (like robots), people perceive it as a social agent with thoughts and intentions similar to those of humans. This perception guides the interaction with the technology and its predicted impact. However, HRI studies have also reported examples in which the Media Equation has been violated, that is when people treat the influence of robots differently from the influence of humans. To address this gap, we propose a model of Robot Social Influence (RoSI) with two contributing factors. The first factor is a robot’s violation of a person’s expectations, whether the robot exceeds expectations or fails to meet expectations. The second factor is a person’s social belonging with the robot, whether the person belongs to the same group as the robot or a different group. These factors are primary predictors of robots’ social influence and commonly mediate the influence of other factors. We review HRI literature and show how RoSI can explain robots’ social influence in concrete HRI scenarios.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
ACM Transactions on Human-Robot Interaction
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Robots' spatial positioning is a useful communication modality in social interactions. For example, in the context of group conversations, certain types of positioning signal membership to the group interaction. How does robot embodiment influence these perceptions? To investigate this question, we conducted an online study in which participants observed renderings of several robots in a social environment, and judged whether the robots were positioned to take part in a group conversation with other humans in the scene. Our results suggest that robot embodiment can influence perceptions of conversational group membership. An important factor to consider in this regard is whether robot embodiment leads to a discernible orientation for the agent. 
    more » « less
  2. null (Ed.)
    The study examines the relationship between the big five personality traits (extroversion, agreeableness, conscientiousness, neuroticism, and openness) and robot likeability and successful HRI implementation in varying human-robot interaction (HRI) situations. Further, this research investigates the influence of human-like attributes in robots (a.k.a. robotic anthropomorphism) on the likeability of robots. The research found that robotic anthropomorphism positively influences the relationship between human personality variables (e.g., extraversion and agreeableness) and robot likeability in human interaction with social robots. Further, anthropomorphism positively influences extraversion and robot likeability during industrial robotic interactions with humans. Extraversion, agreeableness, and neuroticism were found to play a significant role. This research bridges the gap by providing an in-depth understanding of the big five human personality traits, robotic anthropomorphism, and robot likeability in social-collaborative robotics. 
    more » « less
  3. Work in Human–Robot Interaction (HRI) has investigated interactions between one human and one robot as well as human–robot group interactions. Yet the field lacks a clear definition and understanding of the influence a robot can exert on interactions between other group members (e.g., human-to-human). In this article, we define Interaction-Shaping Robotics (ISR), a subfield of HRI that investigates robots that influence the behaviors and attitudes exchanged between two (or more) other agents. We highlight key factors of interaction-shaping robots that include the role of the robot, the robot-shaping outcome, the form of robot influence, the type of robot communication, and the timeline of the robot’s influence. We also describe three distinct structures of human–robot groups to highlight the potential of ISR in different group compositions and discuss targets for a robot’s interaction-shaping behavior. Finally, we propose areas of opportunity and challenges for future research in ISR.

    more » « less
  4. null (Ed.)
    Mobile robots are increasingly populating homes, hospitals, shopping malls, factory floors, and other human environments. Human society has social norms that people mutually accept; obeying these norms is an essential signal that someone is participating socially with respect to the rest of the population. For robots to be socially compatible with humans, it is crucial for robots to obey these social norms. In prior work, we demonstrated a Socially-Aware Navigation (SAN) planner, based on Pareto Concavity Elimination Transformation (PaCcET), in a hallway scenario, optimizing two objectives so the robot does not invade the personal space of people. This article extends our PaCcET-based SAN planner to multiple scenarios with more than two objectives. We modified the Robot Operating System’s (ROS) navigation stack to include PaCcET in the local planning task. We show that our approach can accommodate multiple Human-Robot Interaction (HRI) scenarios. Using the proposed approach, we achieved successful HRI in multiple scenarios such as hallway interactions, an art gallery, waiting in a queue, and interacting with a group. We implemented our method on a simulated PR2 robot in a 2D simulator (Stage) and a pioneer-3DX mobile robot in the real-world to validate all the scenarios. A comprehensive set of experiments shows that our approach can handle multiple interaction scenarios on both holonomic and non-holonomic robots; hence, it can be a viable option for a Unified Socially-Aware Navigation (USAN). 
    more » « less
  5. Abstract

    As technology advances, Human-Robot Interaction (HRI) is boosting overall system efficiency and productivity. However, allowing robots to be present closely with humans will inevitably put higher demands on precise human motion tracking and prediction. Datasets that contain both humans and robots operating in the shared space are receiving growing attention as they may facilitate a variety of robotics and human-systems research. Datasets that track HRI with rich information other than video images during daily activities are rarely seen. In this paper, we introduce a novel dataset that focuses on social navigation between humans and robots in a future-oriented Wholesale and Retail Trade (WRT) environment ( Eight participants performed the tasks that are commonly undertaken by consumers and retail workers. More than 260 minutes of data were collected, including robot and human trajectories, human full-body motion capture, eye gaze directions, and other contextual information. Comprehensive descriptions of each category of data stream, as well as potential use cases are included. Furthermore, analysis with multiple data sources and future directions are discussed.

    more » « less