skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Untargeted Metabolomics Reveals Fruit Secondary Metabolites Alter Bat Nutrient Absorption
Abstract

The ecological interaction between fleshy fruits and frugivores is influenced by diverse mixtures of secondary metabolites that naturally occur in the fruit pulp. Although some fruit secondary metabolites have a primary role in defending the pulp against antagonistic frugivores, these metabolites also potentially affect mutualistic interactions. The physiological impact of these secondary metabolites on mutualistic frugivores remains largely unexplored. Using a mutualistic fruit bat (Carollia perspicillata), we showed that ingesting four secondary metabolites commonly found in plant tissues affects bat foraging behavior and induces changes in the fecal metabolome. Our behavioral trials showed that the metabolites tested typically deter bats. Our metabolomic surveys suggest that secondary metabolites alter, either by increasing or decreasing, the absorption of essential macronutrients. These behavioral and physiological effects vary based on the specific identity and concentration of the metabolite tested. Our results also suggest that a portion of the secondary metabolites consumed is excreted by the bat intact or slightly modified. By identifying key shifts in the fecal metabolome of a mutualistic frugivore caused by secondary metabolite consumption, this study improves our understanding of the effects of fruit chemistry on frugivore physiology.

 
more » « less
Award ID(s):
1953888 1856776
PAR ID:
10507879
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Chemical Ecology
Volume:
50
Issue:
7-8
ISSN:
0098-0331
Format(s):
Medium: X Size: p. 385-396
Size(s):
p. 385-396
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Frugivore foraging behavior is largely influenced by two key groups of chemical traits: nutrients and secondary metabolites. Many secondary metabolites function in plant defense, but their consumption can negatively impact both mutualistic and antagonistic frugivores, often due to toxic properties of the metabolites or through nutrient absorption interference. Frugivores are assumed to maximize nutrient acquisition while avoiding or minimizing toxic metabolite intake, but the relative roles of co‐occurring nutrients and secondary metabolites in foraging behavior are not well understood. Here, we used a neotropical fruit bat to investigate the interactive effects of nutrients and a broadly bioactive fruit secondary metabolite, piperine, on two essential processes in nutrient acquisition, namely foraging behavior and nutrient absorption. Through the manipulation of nutrient and piperine concentrations in artificial diets, we showed that captive fruit bats prioritize nutrient concentrations regardless of the levels of piperine, even though piperine is a strong deterrent on its own. Furthermore, our findings reveal that while piperine has no detectable influence on total sugar absorption, it reduces protein absorption, which is a crucial and limited nutrient in the frugivore diet. Overall, our results demonstrate the importance of considering the interaction between co‐occurring chemical traits in fruit pulp to better understand frugivore foraging and physiology.

     
    more » « less
  2. Data from: Untargeted Metabolomics Reveals Fruit Secondary Metabolites Alter Bat Nutrient Absorption; by Gelambi, M. & Whitehead, S. R. Published in the Journal of Chemical Ecology, 2024. Using a mutualistic fruit bat (Carollia perspicillata), our research explores how four secondary metabolites (piperine, tannin acid, eugenol, and phytol) commonly found in plant tissues affect the foraging behavior and induce changes in the fecal metabolome. In this study, bats were captured and housed in flight cages. Nightly trials exposed them to varying concentrations of secondary metabolites. Objective 1 involved non-choice trials to measure food consumption, while Objective 2 evaluated the impact of metabolite consumption on the bat fecal metabolome. Fecal samples were collected, stored, and later analyzed to understand how secondary metabolites influence bat behavior and metabolism. All the analyses were performed in R v. 4.2.1. 
    more » « less
  3. Abstract

    This study investigated ant seed removal ofPiper sancti‐felicis,an early successional Neotropical shrub. NeotropicalPiperare a classic example of bat‐dispersed plants, but we suggest that ants are underappreciated dispersal agents. We identified eleven ant species from the generaAphaenogaster,Ectatomma,Paratrechina,Pheidole,Trachymyrmex, andWasmanniarecruiting to and harvestingP. sancti‐felicisseeds in forest edge and secondary forest sites at La Selva, Costa Rica. We also tested for differences in ant recruitment to five states in which ants can commonly encounter seeds: unripe fruit, ripe fruit, overripe fruit, bat feces, and cleaned seeds. Overall, ants harvested more seeds from ripe and overripe fruits than other states, but this varied among species. To better understand the mechanisms behind ant preferences for ripe/overripe fruit, we also studied how alkenylphenols, secondary metabolites found in high concentrations inP. sancti‐felicisfruits, affected foraging behavior in one genus of potential ant dispersers,Ectatomma. We found no effects of alkenylphenols on recruitment ofEctatommato fruits, and thus, these compounds are unlikely to explain differences in ant recruitment among fruits of different maturity. Considering thatP. sancti‐felicisseeds have no apparent adaptations for ant dispersal, and few ants removed seeds that were cleaned of pulp, we hypothesize that most ants are harvesting its seeds for the nutritional rewards in the attached pulp. This study emphasizes the importance of ants as important additional dispersers ofP. sancti‐felicisand suggests that other non‐myrmecochorous, vertebrate‐dispersed plants may similarly benefit from the recruitment to fruit by ants.

     
    more » « less
  4. This study investigated ant seed removal of Piper sancti-felicis, an early successional Neotropical shrub. Neotropical Piper are a classic example of bat-dispersed plants, but we suggest that ants are underappreciated dispersal agents. We identified eleven ant species from the genera Aphaenogaster, Ectatomma, Paratrechina, Pheidole, Trachymyrmex, and Wasmannia recruiting to and harvesting P. sancti-felicis seeds in forest edge and secondary forest sites at La Selva, Costa Rica. We also tested for differences in ant recruitment to five states in which ants can commonly encounter seeds: unripe fruit, ripe fruit, overripe fruit, bat feces, and cleaned seeds. Overall, ants harvested more seeds from ripe and overripe fruits than other states, but this varied among species. To better understand the mechanisms behind ant preferences for ripe/overripe fruit, we also studied how alkenylphenols, secondary metabolites found in high concentrations in P. sancti-felicis fruits, affected foraging behavior in one genus of potential ant dispersers, Ectatomma. We found no effects of alkenyl- phenols on recruitment of Ectatomma to fruits, and thus, these compounds are un- likely to explain differences in ant recruitment among fruits of different maturity. Considering that P. sancti-felicis seeds have no apparent adaptations for ant disper- sal, and few ants removed seeds that were cleaned of pulp, we hypothesize that most ants are harvesting its seeds for the nutritional rewards in the attached pulp. This study emphasizes the importance of ants as important additional dispersers of P. sancti-felicis and suggests that other non-myrmecochorous, vertebrate-dispersed plants may similarly benefit from the recruitment to fruit by ants. 
    more » « less
  5. Abstract

    Through frugivory and seed dispersal, vertebrates influence plant demography and forest regeneration. Variation in local habitat surrounding fruiting plants can influence frugivore foraging decisions, thereby creating intraspecific variation in seed dispersal services. However, we have little knowledge of drivers of local variation in frugivory. Here, we investigate factors that may influence frugivore diversity and fruit removal at the level of individual plants. We focus on a common understory palm within a continuous Chocó forest with mixed land‐use histories in Ecuador. The density of pioneer tree species in the genusCecropiaaround focal palms was negatively related to fruit removal and the diversity of frugivores visiting palms. This may relate to the fact that the presence and abundance ofCecropiaspecies often indicate the existence and severity of past disturbances. LocalCecropiadensity was also related to an overall shift in the frugivore community that corresponded with an increase in fruit removal by lower‐quality seed dispersers (rodents). We also found that the local density of fruiting conspecifics was positively related to frugivore diversity, but not fruit removal. Our results provide information on drivers of intraspecific inequalities in plant populations across tropical forest landscapes. The reduction in fruit removal and frugivore diversity associated with localCecropiaabundance suggests that seed dispersal services can be sensitive to fine‐scale variation in habitat structure. Furthermore, becauseCecropiaare often indicative of past disturbances, this indicates that even small‐scale habitat degradation by humans can have lasting effects by creating localized pockets of forest unfavored by frugivores.

    Abstract in Spanish is available with online material.

     
    more » « less