skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifiability of Bifactor Models
The bifactor model and its extensions are multidimensional latent vari- able models, under which each item measures up to one subdimension on top of the primary dimension(s). Despite their wide applications to educational and psycho- logical assessments, these multidimensional latent variable models may suffer from nonidentifiability, which can further lead to inconsistent parameter estimation and invalid inference. The current work provides a relatively complete characterization of identifiability for linear and dichotomous bifactor models and the linear extended bifactor model with correlated subdimensions. In addition, similar results for the two-tier models are developed. Illustrative examples on checking model identifia- bility by inspecting the factor loading structure are provided. Simulation studies examine the estimation consistency when the identifiability conditions are/are not satisfied.  more » « less
Award ID(s):
2015417
PAR ID:
10507968
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Editor(s):
Chen, Rong; Huang, Su-Yun; Shen, Xiaotong
Publisher / Repository:
Academia Sinica
Date Published:
Journal Name:
Statistica Sinica
Edition / Version:
1
Volume:
31
Issue:
5
ISSN:
1017-0405
Page Range / eLocation ID:
2309-2330
Subject(s) / Keyword(s):
Bifactor model, educational and psychological measure- ment, identifiability, item factor analysis, multidimensional item response theory, testlet, two-tier model.
Format(s):
Medium: X Size: 0.3MB Other: pdf
Size(s):
0.3MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Identifying latent variables and causal structures from observational data is essential to many real-world applications involving biological data, medical data, and unstructured data such as images and languages. However, this task can be highly challenging, especially when observed variables are generated by causally related latent variables and the relationships are nonlinear. In this work, we investigate the identification problem for nonlinear latent hierarchical causal models in which observed variables are generated by a set of causally related latent variables, and some latent variables may not have observed children. We show that the identifiability of causal structures and latent variables (up to invertible transformations) can be achieved under mild assumptions: on causal structures, we allow for multiple paths between any pair of variables in the graph, which relaxes latent tree assumptions in prior work; on structural functions, we permit general nonlinearity and multi-dimensional continuous variables, alleviating existing work's parametric assumptions. Specifically, we first develop an identification criterion in the form of novel identifiability guarantees for an elementary latent variable model. Leveraging this criterion, we show that both causal structures and latent variables of the hierarchical model can be identified asymptotically by explicitly constructing an estimation procedure. To the best of our knowledge, our work is the first to establish identifiability guarantees for both causal structures and latent variables in nonlinear latent hierarchical models. 
    more » « less
  2. Abstract High-dimensional categorical data are routinely collected in biomedical and social sciences. It is of great importance to build interpretable parsimonious models that perform dimension reduction and uncover meaningful latent structures from such discrete data. Identifiability is a fundamental requirement for valid modeling and inference in such scenarios, yet is challenging to address when there are complex latent structures. In this article, we propose a class of identifiable multilayer (potentially deep) discrete latent structure models for discrete data, termed Bayesian Pyramids. We establish the identifiability of Bayesian Pyramids by developing novel transparent conditions on the pyramid-shaped deep latent directed graph. The proposed identifiability conditions can ensure Bayesian posterior consistency under suitable priors. As an illustration, we consider the two-latent-layer model and propose a Bayesian shrinkage estimation approach. Simulation results for this model corroborate the identifiability and estimatability of model parameters. Applications of the methodology to DNA nucleotide sequence data uncover useful discrete latent features that are highly predictive of sequence types. The proposed framework provides a recipe for interpretable unsupervised learning of discrete data and can be a useful alternative to popular machine learning methods. 
    more » « less
  3. Identifying latent variables and causal structures from observational data is essential to many real-world applications involving biological data, medical data, and unstructured data such as images and languages. However, this task can be highly challenging, especially when observed variables are generated by causally related latent variables and the relationships are nonlinear. In this work, we investigate the identification problem for nonlinear latent hierarchical causal models in which observed variables are generated by a set of causally related latent variables, and some latent variables may not have observed children. We show that the identifiability of both causal structure and latent variables can be achieved under mild assumptions: on causal structures, we allow for the existence of multiple paths between any pair of variables in the graph, which relaxes latent tree assumptions in prior work; on structural functions, we do not make parametric assumptions, thus permitting general nonlinearity and multi-dimensional continuous variables. Specifically, we first develop a basic identification criterion in the form of novel identifiability guarantees for an elementary latent variable model. Leveraging this criterion, we show that both causal structures and latent variables of the hierarchical model can be identified asymptotically by explicitly constructing an estimation procedure. To the best of our knowledge, our work is the first to establish identifiability guarantees for both causal structures and latent variables in nonlinear latent hierarchical models. 
    more » « less
  4. Abstract Latent space models are often used to model network data by embedding a network’s nodes into a low-dimensional latent space; however, choosing the dimension of this space remains a challenge. To this end, we begin by formalizing a class of latent space models we call generalized linear network eigenmodels that can model various edge types (binary, ordinal, nonnegative continuous) found in scientific applications. This model class subsumes the traditional eigenmodel by embedding it in a generalized linear model with an exponential dispersion family random component and fixes identifiability issues that hindered interpretability. We propose a Bayesian approach to dimension selection for generalized linear network eigenmodels based on an ordered spike-and-slab prior that provides improved dimension estimation and satisfies several appealing theoretical properties. We show that the model’s posterior is consistent and concentrates on low-dimensional models near the truth. We demonstrate our approach’s consistent dimension selection on simulated networks, and we use generalized linear network eigenmodels to study the effect of covariates on the formation of networks from biology, ecology, and economics and the existence of residual latent structure. 
    more » « less
  5. We prove identifiability of a broad class of deep latent variable models that (a) have universal approximation capabilities and (b) are the decoders of variational auto-encoders that are commonly used in practice. Unlike existing work, our analysis does not require weak supervision, auxiliary information, or conditioning in the latent space. Specifically, we show that for a broad class of generative (i.e. unsupervised) models with universal approximation capabilities, the side information u is not necessary: We prove identifiability of the entire generative model where we do not observe u and only observe the data x. The models we consider match auto-encoder architectures used in practice that leverage mixture priors in the latent space and ReLU/leaky-ReLU activations in the encoder, such as VaDE and MFC-VAE. Our main result is an identifiability hierarchy that significantly generalizes previous work and exposes how different assumptions lead to different “strengths” of identifiability, and includes certain “vanilla” VAEs with isotropic Gaussian priors as a special case. For example, our weakest result establishes (unsupervised) identifiability up to an affine transformation, and thus partially resolves an open problem regarding model identifiability raised in prior work. These theoretical results are augmented with experiments on both simulated and real data. 
    more » « less