skip to main content

This content will become publicly available on December 1, 2024

Title: Leaf-level coordination principles propagate to the ecosystem scale

Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories – the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis – are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature Portfolio
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Medeiros, Juliana (Ed.)
    Abstract The study of plant functional traits and variation among and within species can help illuminate functional coordination and trade-offs in key processes that allow plants to grow, reproduce and survive. We studied 20 leaf, above-ground stem, below-ground stem and fine-root traits of 17 Costus species from forests in Costa Rica and Panama to answer the following questions: (i) Do congeneric species show above-ground and below-ground trait coordination and trade-offs consistent with theory of resource acquisition and conservation? (ii) Is there correlated evolution among traits? (iii) Given the diversity of habitats over which Costus occurs, what is the relative contribution of site and species to trait variation? We performed a principal components analysis (PCA) to assess for the existence of a spectrum of trait variation and found that the first two PCs accounted for 21.4 % and 17.8 % of the total trait variation, respectively, with the first axis of variation being consistent with a continuum of resource-acquisitive and resource-conservative traits in water acquisition and use, and the second axis of variation being related to the leaf economics spectrum. Stomatal conductance was negatively related to both above-ground stem and rhizome specific density, and these relationships became stronger after accounting for evolutionary relatedness, indicating correlated evolution. Despite elevation and climatic differences among sites, high trait variation was ascribed to individuals rather than to sites. We conclude that Costus species present trait coordination and trade-offs that allow species to be categorized as having a resource-acquisitive or resource-conservative functional strategy, consistent with a whole-plant functional strategy with evident coordination and trade-offs between above-ground and below-ground function. Our results also show that herbaceous species and species with rhizomes tend to agree with trade-offs found in more species-rich comparisons. 
    more » « less
  2. Abstract Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles. 
    more » « less
  3. Summary

    Non‐structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well‐recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear.

    We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China.

    We observed contrasting coordination of NSC with economics traits in leaves and roots. Leaf total NSC and soluble sugar aligned with the leaf economic spectrum, conveying a trade‐off between growth and storage in leaves. However, NSC in roots was independent of the root economic spectrum, but highly coordinated with root foraging, with more starch and less sugar in forage‐efficient, thinner roots. Further, NSC‐trait coordination in leaves and roots was, respectively, driven by local temperature and precipitation.

    These findings highlight distinct roles of NSC in shaping the above‐ and belowground multidimensional economics trait space, and NSC‐based carbon economics provides a mechanistic understanding of how plants adapt to heterogeneous habitats and respond to environmental changes.

    more » « less
  4. Abstract

    Roots are essential to the diversity and functioning of plant communities, but trade‐offs in rooting strategies are still poorly understood.

    We evaluated existing frameworks of rooting strategy trade‐offs and tested their underlying assumptions, guided by the hypothesis that community‐level rooting strategies are best described by a combination of variation in organ‐level traits, plant‐level root:shoot allocation and symbiosis‐level mycorrhizal dependency. We tested this hypothesis using data on plant community structure, above‐ and below‐ground biomass, eight root traits including mycorrhizal colonisation and soil properties from an edaphic gradient driven by elevation and water availability in sandhills prairie, Nebraska, USA.

    We found multidimensional trade‐offs in rooting strategies represented by a two‐way productivity‐durability trade‐off axis (captured by root length density and root dry matter content) and a three‐way resource acquisition trade‐off between specific root length, root:shoot mass ratio and mycorrhizal dependence. Variation in rooting strategies was driven to similar extents by interspecific differences and intraspecific responses to soil properties.

    Organ‐level traits alone were insufficient to capture community‐level trade‐offs in rooting strategies across the edaphic gradient. Instead, trait variation encompassing organ, plant and symbiosis levels revealed that consideration of whole‐plant phenotypic integration is essential to defining multidimensional trade‐offs shaping the functional variation of root systems.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  5. Abstract

    Environmental gradients act as potent filters on species distributions driving compositional shifts across communities. Compositional shifts may reflect differences in physiological tolerances to a limiting resource that result in broad distributions for tolerant species and restricted distributions for intolerant species (i.e. a nested pattern). Alternatively, trade‐offs in resource use or conflicting species' responses to multiple resources can result in complete turnover of species along gradients.

    We combined trait (leaf area, leaf mass per area, wood density and maximum height) and distribution data for 550 tree species to examine taxonomic and functional composition at 72 sites across strong gradients of soil phosphorus (P) and rainfall in central Panama.

    We determined whether functional and taxonomic composition was nested or turned over completely and whether community mean traits and species composition were more strongly driven by P or moisture.

    Turnover characterized the functional composition of tree communities. Leaf traits responded to both gradients, with species having larger and thinner leaves in drier and more fertile sites than in wetter and less fertile sites. These leaf trait–moisture relationships contradict predictions based on drought responses and suggest a greater role for differences in light availability than in moisture. Shifts in wood density and maximum height were weaker than for leaf traits with taller species dominating wet sites and low wood density species dominating P‐rich sites.

    Turnover characterized the taxonomic composition of tree communities. Geographic distances explained a larger fraction of variation for taxonomic composition than for functional composition, and community mean traits were more strongly driven by P than moisture.

    Synthesis. Our results offer weak support for the tolerance hypothesis for tree communities in central Panama. Instead, we observe functional and taxonomic turnover reflecting trade‐offs and conflicting species' responses to multiple abiotic factors including moisture, soil phosphorus and potentially other correlated variables (e.g. light).

    more » « less