skip to main content


This content will become publicly available on May 7, 2025

Title: Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks
Molecular Representation Learning (MRL) has proven impactful in numerous biochemical applications such as drug discovery and enzyme design. While Graph Neural Networks (GNNs) are effective at learning molecular representations from a 2D molecular graph or a single 3D structure, existing works often overlook the flexible nature of molecules, which continuously interconvert across conformations via chemical bond rotations and minor vibrational perturbations. To better account for molecular flexibility, some recent works formulate MRL as an ensemble learning problem, focusing on explicitly learning from a set of conformer structures. However, most of these studies have limited datasets, tasks, and models. In this work, we introduce the first MoleculAR Conformer Ensemble Learning (MARCEL) benchmark to thoroughly evaluate the potential of learning on con- former ensembles and suggest promising research directions. MARCEL includes four datasets covering diverse molecule- and reaction-level properties of chemically diverse molecules including organocatalysts and transition-metal catalysts, extending beyond the scope of common GNN benchmarks that are confined to drug-like molecules. In addition, we conduct a comprehensive empirical study, which benchmarks representative 1D, 2D, and 3D MRL models, along with two strategies that explicitly incorporate conformer ensembles into 3D models. Our findings reveal that direct learning from an accessible conformer space can improve performance on a variety of tasks and models.  more » « less
Award ID(s):
2202693
PAR ID:
10508171
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
International Conference on Learning Representations
Date Published:
Journal Name:
The 12th International Conference on Learning Representations (ICLR)
Format(s):
Medium: X
Location:
Vienna, Austria
Sponsoring Org:
National Science Foundation
More Like this
  1. Molecular representation learning (MRL) is a key step to build the connection between machine learning and chemical science. In particular, it encodes molecules as numerical vectors preserving the molecular structures and features, on top of which the downstream tasks (e.g., property prediction) can be performed. Recently, MRL has achieved considerable progress, especially in methods based on deep molecular graph learning. In this survey, we systematically review these graph-based molecular representation techniques, especially the methods incorporating chemical domain knowledge. Specifically, we first introduce the features of 2D and 3D molecular graphs. Then we summarize and categorize MRL methods into three groups based on their input. Furthermore, we discuss some typical chemical applications supported by MRL. To facilitate studies in this fast-developing area, we also list the benchmarks and commonly used datasets in the paper. Finally, we share our thoughts on future research directions.

     
    more » « less
  2. Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery. Existing generative models have several drawbacks including lack of modeling important molecular geometry elements (e.g. torsion angles), separate optimization stages prone to error accumulation, and the need for structure fine-tuning based on approximate classical force-fields or computationally expensive methods such as metadynamics with approximate quantum mechanics calculations at each geometry. We propose GeoMol--an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate distributions of low-energy molecular 3D conformers. Leveraging the power of message passing neural networks (MPNNs) to capture local and global graph information, we predict local atomic 3D structures and torsion angles, avoiding unnecessary over-parameterization of the geometric degrees of freedom (e.g. one angle per non-terminal bond). Such local predictions suffice both for the training loss computation, as well as for the full deterministic conformer assembly (at test time). We devise a non-adversarial optimal transport based loss function to promote diverse conformer generation. GeoMol predominantly outperforms popular open-source, commercial, or state-of-the-art machine learning (ML) models, while achieving significant speed-ups. We expect such differentiable 3D structure generators to significantly impact molecular modeling and related applications. 
    more » « less
  3. Recently, molecular fingerprints extracted from three-dimensional (3D) structures using advanced mathematics, such as algebraic topology, differential geometry, and graph theory have been paired with efficient machine learning, especially deep learning algorithms to outperform other methods in drug discovery applications and competitions. This raises the question of whether classical 2D fingerprints are still valuable in computer-aided drug discovery. This work considers 23 datasets associated with four typical problems, namely protein–ligand binding, toxicity, solubility and partition coefficient to assess the performance of eight 2D fingerprints. Advanced machine learning algorithms including random forest, gradient boosted decision tree, single-task deep neural network and multitask deep neural network are employed to construct efficient 2D-fingerprint based models. Additionally, appropriate consensus models are built to further enhance the performance of 2D-fingerprint-based methods. It is demonstrated that 2D-fingerprint-based models perform as well as the state-of-the-art 3D structure-based models for the predictions of toxicity, solubility, partition coefficient and protein–ligand binding affinity based on only ligand information. However, 3D structure-based models outperform 2D fingerprint-based methods in complex-based protein–ligand binding affinity predictions. 
    more » « less
  4. null (Ed.)
    Abstract The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional encoder from transformer, can incorporate massive unlabeled molecular data into molecular representations via a self-supervised learning strategy, it neglects three-dimensional (3D) stereochemical information. Algebraic graph, specifically, element-specific multiscale weighted colored algebraic graph, embeds complementary 3D molecular information into graph invariants. We propose an algebraic graph-assisted bidirectional transformer (AGBT) framework by fusing representations generated by algebraic graph and bidirectional transformer, as well as a variety of machine learning algorithms, including decision trees, multitask learning, and deep neural networks. We validate the proposed AGBT framework on eight molecular datasets, involving quantitative toxicity, physical chemistry, and physiology datasets. Extensive numerical experiments have shown that AGBT is a state-of-the-art framework for molecular property prediction. 
    more » « less
  5. This Figshare repository contains the datasets and models for our paper titled: Rapid Prediction of Conformationally-Dependent DFT-Level Descriptors using Graph Neural Networks for Carboxylic Acids and Alkyl Amines. It is organized into 2D and 3D, which represent the modeling architectures used in building graph neural networks for molecular descriptors corresponding to acids and amines. Carboxylic acid, primary alkyl amine, and secondary alkyl amine (as well as a combined alkyl amine) libraries are provided in their entirety, including conformer properties. Additional test and external validation statistics for each library are also provided within this repository.

     
    more » « less