This content will become publicly available on December 1, 2025
The topological phases of non-interacting fermions have been classified by their symmetries, culminating in a modern electronic band theory where wavefunction topology can be obtained from momentum space. Recently, Real Space Invariants (RSIs) have provided a spatially local description of the global momentum space indices. The present work generalizes this real space classification to interacting 2D states. We construct many-body local RSIs as the quantum numbers of a set of symmetry operators on open boundaries, but which are independent of the choice of boundary. Using the
- Award ID(s):
- 2011750
- NSF-PAR ID:
- 10508188
- Publisher / Repository:
- Nature Communication
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)A topological insulator reveals its nontrivial bulk through the presence of gapless edge states: This is called the bulk-boundary correspondence. However, the recent discovery of “fragile” topological states with no gapless edges casts doubt on this concept. We propose a generalization of the bulk-boundary correspondence: a transformation under which the gap between the fragile phase and other bands must close. We derive specific twisted boundary conditions (TBCs) that can detect all the two-dimensional eigenvalue fragile phases. We develop the concept of real-space invariants, local good quantum numbers in real space, which fully characterize these phases and determine the number of gap closings under the TBCs. Realizations of the TBCs in metamaterials are proposed, thereby providing a route to their experimental verification.more » « less
-
Topology and disorder have a rich combined influence on quantum transport. To probe their interplay, we synthesized one-dimensional chiral symmetric wires with controllable disorder via spectroscopic Hamiltonian engineering, based on the laser-driven coupling of discrete momentum states of ultracold atoms. Measuring the bulk evolution of a topological indicator after a sudden quench, we observed the topological Anderson insulator phase, in which added disorder drives the band structure of a wire from topologically trivial to nontrivial. In addition, we observed the robustness of topologically nontrivial wires to weak disorder and measured the transition to a trivial phase in the presence of strong disorder. Atomic interactions in this quantum simulation platform may enable realizations of strongly interacting topological fluids.
-
null (Ed.)Abstract Superfluid 3 He, with unconventional spin-triplet p-wave pairing, provides a model system for topological superconductors, which have attracted significant interest through potential applications in topologically protected quantum computing. In topological insulators and quantum Hall systems, the surface/edge states, arising from bulk-surface correspondence and the momentum space topology of the band structure, are robust. Here we demonstrate that in topological superfluids and superconductors the surface Andreev bound states, which depend on the momentum space topology of the emergent order parameter, are fragile with respect to the details of surface scattering. We confine superfluid 3 He within a cavity of height D comparable to the Cooper pair diameter ξ 0 . We precisely determine the superfluid transition temperature T c and the suppression of the superfluid energy gap, for different scattering conditions tuned in situ, and compare to the predictions of quasiclassical theory. We discover that surface magnetic scattering leads to unexpectedly large suppression of T c , corresponding to an increased density of low energy bound states.more » « less
-
null (Ed.)In this article, we provide a pedagogical review of the theory of topological quantum chemistry and topological crystalline insulators. We begin with an overview of the properties of crystal symmetry groups in position and momentum space. Next, we introduce the concept of a band representation, which quantifies the symmetry of topologically trivial band structures. By combining band representations with symmetry constraints on the connectivity of bands in momentum space, we show how topologically nontrivial bands can be cataloged and classified. We present several examples of new topological phases discovered using this paradigm and conclude with an outlook toward future developments.more » « less
-
Abstract Symmetry-protected topological phases of matter have challenged our understanding of condensed matter systems and harbour exotic phenomena promising to address major technological challenges. Considerable understanding of these phases of matter has been gained recently by considering additional protecting symmetries, different types of quasiparticles, and systems out of equilibrium. Here, we show that symmetries could be enforced not just on full Hamiltonians, but also on their components. We construct a large class of previously unidentified multiplicative topological phases of matter characterized by tensor product Hilbert spaces similar to the Fock space of multiple particles. To demonstrate our methods, we introduce multiplicative topological phases of matter based on the foundational Hopf and Chern insulator phases, the multiplicative Hopf and Chern insulators (MHI and MCI), respectively. The MHI shows the distinctive properties of the parent phases as well as non-trivial topology of a child phase. We also comment on a similar structure in topological superconductors as these multiplicative phases are protected in part by particle-hole symmetry. The MCI phase realizes topologically protected gapless states that do not extend from the valence bands to the conduction bands for open boundary conditions, which respects to the symmetries protecting topological phase. The band connectivity discovered in MCI could serve as a blueprint for potential multiplicative topology with exotic properties.