The Mississippi River System is of great ecological and economic importance, making it crucial to monitor contaminants within it. While nutrient pollution is well studied, there are little data on microplastics (MPs) in the Mississippi River System (MSRS), especially during drought conditions. Herein, we characterize MP pollution from seven sites across the MSRS during both flash drought and non-drought periods using FTIR microspectroscopy (µ-FTIR). Additionally, we evaluate the impact of multiple water level conditions on MP polymer composition across five time points at a single sampling site. Of all MPs identified, polyethylene terephthalate (PET, 22%), resin (17%), and polyethylene (PE, 10%) were the most abundant polymers. Average concentrations ranged from 16 to 381 MPs/L across seven sites, with no significant difference in concentration between conditions. Irregular particles were the most common morphology, with most MPs falling in the lowest size range measured (30–100 μm). Drought condition had a significant (p < 0.001) impact on polymer composition, and polymers most strongly correlated with flash drought were mostly fluoropolymers. For the single sampling site, concentrations differed, but not significantly, across the five timepoints. These results demonstrate the complex relationship between MP concentration and drought condition, and also highlight the importance of fully characterizing MPs in environmental studies.
more »
« less
Hydrometeorological Drivers of the 2023 Louisiana Water Crisis
Abstract During summer and fall 2023, Louisiana experienced a historic local drought while dry conditions elsewhere in the central US withheld vital runoff from the Mississippi River, leading to below‐normal discharge into the Gulf of Mexico. Thus, by late October 2023, Louisiana was gripped by two super‐imposed water crises: a severe local drought and saltwater contamination in the Mississippi River channel. This study frames the development of the water emergency through the lens of flash drought using the Evaporative Demand Drought Index (EDDI). The EDDI shows south Louisiana experience a flash drought during June 2023, while the Mississippi River basin was subsequently characterized by large expanses of high‐percentile EDDI in August‐September 2023 shortly before the saltwater intrusion episode along the lower Mississippi River. Over the last 15 years, MRB‐wide EDDI percentile has oscillated between years‐long elevated and depressed states, accounting for 23.7% of the monthly discharge anomaly near New Orleans.
more »
« less
- PAR ID:
- 10508292
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 10
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Changes in climate are expected to influence discharge of the lower Mississippi River, but projections disagree on whether discharge will increase or decrease over the coming century. Using a reconstructed median peak annual flow for the past 1,500 years based on geomorphic scaling laws, we show that discharge on the lower Mississippi River decreased during the Medieval era (c. 1000–1200 CE)—a period of regionally warm and dry conditions that serves as a partial analog for projected warming. These changes in discharge inferred from channel morphology track discharge simulated in the Community Earth System Model Last Millennium Ensemble. Simulations show that decreased Medieval era discharge is driven primarily by regionally enhanced evapotranspiration. Our findings are consistent with 21st century projections of decreased discharge on the lower Mississippi River under moderate greenhouse forcing scenarios, and demonstrate consistency between reconstructed and simulated discharge over the last millennium.more » « less
-
Hurricanes are one of the most devastating earth surface processes. In 2020 and 2021, Hurricanes Zeta and Ida pounded the Mississippi River Delta in two consecutive years, devastated South Louisiana, and raised tremendous concerns for scientists and stakeholders around the world. This study presents a high-resolution spatial-temporal analysis incorporating planialtimetric data acquired via LIDAR, drone, and satellite to investigate the shoreline dynamics near Port Fourchon, Louisiana, the eye of Ida at landfall, before and after the beach nourishment project and recent hurricane landfalls. The remote sensing analysis shows that the volume of the ~2 km studied beachfront was reduced by 240,858 m3 after consecutive landfalls of Hurricanes Zeta and Ida in 2020 and 2021, while 82,915 m3 of overwash fans were transported to the backbarrier areas. Overall, the studied beach front lost almost 40% of its volume in 2019, while the average dune crest height was reduced by over 1 m and the shoreline retreated ~60 m after the two hurricane strikes. Our spatial-temporal dataset suggests that the Louisiana Coastal Protection and Restoration Authority’s (CPRA’s) beach nourishment effort successfully stabilized the beach barrier at Port Fourchon during the hurricane-quiescent years but was not adequate to protect the shoreline at the Mississippi River Delta from intense hurricane landfalls. Our study supports the conclusion that, in the absence of further human intervention, Bay Champagne will likely disappear completely into the Gulf of Mexico within the next 40 years.more » « less
-
Abstract Emissions of methane (CH4) and nitrous oxide (N2O) from soils to the atmosphere can offset the benefits of carbon sequestration for climate change mitigation. While past study has suggested that both CH4and N2O emissions from tidal freshwater forested wetlands (TFFW) are generally low, the impacts of coastal droughts and drought‐induced saltwater intrusion on CH4and N2O emissions remain unclear. In this study, a process‐driven biogeochemistry model, Tidal Freshwater Wetland DeNitrification‐DeComposition (TFW‐DNDC), was applied to examine the responses of CH4and N2O emissions to episodic drought‐induced saltwater intrusion in TFFW along the Waccamaw River and Savannah River, USA. These sites encompass landscape gradients of both surface and porewater salinity as influenced by Atlantic Ocean tides superimposed on periodic droughts. Surprisingly, CH4and N2O emission responsiveness to coastal droughts and drought‐induced saltwater intrusion varied greatly between river systems and among local geomorphologic settings. This reflected the complexity of wetland CH4and N2O emissions and suggests that simple linkages to salinity may not always be relevant, as non‐linear relationships dominated our simulations. Along the Savannah River, N2O emissions in the moderate‐oligohaline tidal forest site tended to increase dramatically under the drought condition, while CH4emission decreased. For the Waccamaw River, emissions of both CH4and N2O in the moderate‐oligohaline tidal forest site tended to decrease under the drought condition, but the capacity of the moderate‐oligohaline tidal forest to serve as a carbon sink was substantially reduced due to significant declines in net primary productivity and soil organic carbon sequestration rates as salinity killed the dominant freshwater vegetation. These changes in fluxes of CH4and N2O reflect crucial synergistic effects of soil salinity and water level on C and N dynamics in TFFW due to drought‐induced seawater intrusion.more » « less
-
Abstract The Mississippi River represents a major commercial waterway, and periods of anomalously low river levels disrupt riverine transport. These low-flow events occur periodically, with a recent event in the fall of 2022 slowing barge traffic and generating sharp increases in riverine transportation costs. Here we combine instrumental river gage observations from the lower Mississippi River with output from the Community Earth System Model v2 Large Ensemble (LENS2) to evaluate historical trends and future projections of Mississippi River low streamflow extremes, place the 2022 low-flow event in a broader temporal context, and assess the hydroclimatic mechanisms that mediate the occurrence of low-flows. We show that the severity and duration of low-flow events gradually decreased between 1950 and 1980 coincident with the establishment of artificial reservoirs. In the context of the last ∼70 years, the 2022 low-flow event was less severe in terms of stage or discharge minima than other low-flow events of the mid- and late-20th century. Model simulations from the LENS2 dataset show that, under a moderate-high emissions scenario (SSP3-7.0), the severity and duration of low-flow events is projected to decrease through to the end of the 21st century. Finally, we use the large sample size afforded by the LENS2 dataset to show that low-flow events on the Mississippi River are associated with cold tropical Pacific forcing (i.e. La Niña conditions), providing support for the hypothesis that the El Niño-Southern Oscillation plays a critical role in mediating Mississippi River discharge extremes. We anticipate that our findings describing the trends in and hydroclimatic mechanisms of Mississippi River low-flow occurrence will aid water resource managers to reduce the negative impacts of low water levels on riverine transport.more » « less