This content will become publicly available on February 1, 2025
- Award ID(s):
- 2208404
- PAR ID:
- 10508359
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Computers & Mathematics with Applications
- Volume:
- 155
- Issue:
- C
- ISSN:
- 0898-1221
- Page Range / eLocation ID:
- 80 to 90
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Foundational and state-of-the-art anomaly-detection methods through power system state estimation are reviewed. Traditional components for bad data detection, such as chi-square testing, residual-based methods, and hypothesis testing, are discussed to explain the motivations for recent anomaly-detection methods given the increasing complexity of power grids, energy management systems, and cyber-threats. In particular, state estimation anomaly detection based on data-driven quickest-change detection and artificial intelligence are discussed, and directions for research are suggested with particular emphasis on considerations of the future smart grid.more » « less
-
Abstract A state‐space representation of water quality (WQ) dynamics describing disinfectant (e.g., chlorine) transport dynamics in drinking water distribution networks has been recently proposed. Such representation is a byproduct of space‐ and time‐discretization of the partial differential equations modeling transport dynamics. This results in a large state‐space dimension even for small networks with tens of nodes. Although such a state‐space model provides a model‐driven approach to predict WQ dynamics, incorporating it into model‐based control algorithms or state estimators for large networks is challenging and at times intractable. To that end, this paper investigates model order reduction (MOR) methods for WQ dynamics with the objective of performing post‐reduction feedback control. The presented investigation focuses on reducing state‐dimension by orders of magnitude, the stability of the MOR methods, and the application of these methods to model predictive control.
-
In partially observable reinforcement learning, offline training gives access to latent information which is not available during online training and/or execution, such as the system state. Asymmetric actor-critic methods exploit such information by training a history-based policy via a state-based critic. However, many asymmetric methods lack theoretical foundation, and are only evaluated on limited domains. We examine the theory of asymmetric actor-critic methods which use state-based critics, and expose fundamental issues which undermine the validity of a common variant, and limit its ability to address partial observability. We propose an unbiased asymmetric actor-critic variant which is able to exploit state information while remaining theoretically sound, maintaining the validity of the policy gradient theorem, and introducing no bias and relatively low variance into the training process. An empirical evaluation performed on domains which exhibit significant partial observability confirms our analysis, demonstrating that unbiased asymmetric actor-critic converges to better policies and/or faster than symmetric and biased asymmetric baselines.more » « less
-
Recent advancements in two-photon calcium imaging have enabled scientists to record the activity of thousands of neurons with cellular resolution. This scope of data collection is crucial to understanding the next generation of neuroscience questions, but analyzing these large recordings requires automated methods for neuron segmentation. Supervised methods for neuron segmentation achieve state of-the-art accuracy and speed but currently require large amounts of manually generated ground truth training labels. We reduced the required number of training labels by designing a semi-supervised pipeline. Our pipeline used neural network ensembling to generate pseudolabels to train a single shallow U-Net. We tested our method on three publicly available datasets and compared our performance to three widely used segmentation methods. Our method outperformed other methods when trained on a small number of ground truth labels and could achieve state-of-the-art accuracy after training on approximately a quarter of the number of ground truth labels as supervised methods. When trained on many ground truth labels, our pipeline attained higher accuracy than that of state-of-the-art methods. Overall, our work will help researchers accurately process large neural recordings while minimizing the time and effort needed to generate manual labels.
-
Abstract Gravitational-wave observations of binary neutron star mergers provide valuable information about neutron star structure and the equation of state of dense nuclear matter. Numerous methods have been proposed to analyze the population of observed neutron stars, and previous work has demonstrated the necessity of jointly fitting the astrophysical distribution and the equation of state in order to accurately constrain the equation of state. In this work, we introduce a new framework to simultaneously infer the distribution of binary neutron star masses and the nuclear equation of state using Gaussian mixture model density estimates, which mitigates some of the limitations previously used methods suffer from. Using our method, we reproduce previous projections for the expected precision of our joint mass distribution and equation-of-state inference with tens of observations. We also show that mismodeling the equation of state can bias our inference of the neutron star mass distribution. While we focus on neutron star masses and matter effects, our method is widely applicable to population inference problems.