skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Photolipid excitation triggers depolarizing optocapacitive currents and action potentials
Abstract Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control.  more » « less
Award ID(s):
2121044
PAR ID:
10508391
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Like their chemical counterparts, electrical synapses show complex dynamics such as rectification and voltage dependence that interact with other electrical processes in neurons. The consequences arising from these interactions for the electrical behavior of the synapse, and the dynamics they create, remain largely unexplored. Using a voltage-dependent electrical synapse between a descending modulatory projection neuron (MCN1) and a motor neuron (LG) in the crustacean stomatogastric ganglion, we find that the influence of the hyperpolarization-activated inward current ( I h ) is critical to the function of the electrical synapse. When we blocked I h with CsCl, the apparent voltage dependence of the electrical synapse shifted by 18.7 mV to more hyperpolarized voltages, placing the dynamic range of the electrical synapse outside of the range of voltages used by the LG motor neuron (−60.2 mV to −44.9 mV). With dual electrode current- and voltage-clamp recordings, we demonstrate that this voltage shift is not due to a change in the properties of the gap junction itself, but is a result of a sustained effect of I h on the presynaptic MCN1 axon terminal membrane potential. I h -induced depolarization of the axon terminal membrane potential increased the electrical postsynaptic potentials and currents. With I h present, the axon terminal resting membrane potential is depolarized, shifting the dynamic range of the electrical synapse toward the functional range of the motor neuron. We thus demonstrate that the function of an electrical synapse is critically influenced by a voltage-dependent ionic current ( I h ). NEW & NOTEWORTHY Electrical synapses and voltage-gated ionic currents are often studied independently from one another, despite mounting evidence that their interactions can alter synaptic behavior. We show that the hyperpolarization-activated inward ionic current shifts the voltage dependence of electrical synaptic transmission through its depolarizing effect on the membrane potential, enabling it to lie within the functional membrane potential range of a motor neuron. Thus, the electrical synapse’s function critically depends on the voltage-gated ionic current. 
    more » « less
  2. Abstract In biology, heterosynaptic plasticity maintains homeostasis in synaptic inputs during associative learning and memory, and initiates long-term changes in synaptic strengths that nonspecifically modulate different synapse types. In bioinspired neuromorphic circuits, heterosynaptic plasticity may be used to extend the functionality of two-terminal, biomimetic memristors. In this article, we explore how changes in the pH of droplet interface bilayer aqueous solutions modulate the memristive responses of a lipid bilayer membrane in the pH range 4.97–7.40. Surprisingly, we did not find conclusive evidence for pH-dependent shifts in the voltage thresholds ( V* ) needed for alamethicin ion channel formation in the membrane. However, we did observe a clear modulation in the dynamics of pore formation with pH in time-dependent, pulsed voltage experiments. Moreover, at the same voltage, lowering the pH resulted in higher steady-state currents because of increased numbers of conductive peptide ion channels in the membrane. This was due to increased partitioning of alamethicin monomers into the membrane at pH 4.97, which is below the pKa (~5.3–5.7) of carboxylate groups on the glutamate residues of the peptide, making the monomers more hydrophobic. Neutralization of the negative charges on these residues, under acidic conditions, increased the concentration of peptide monomers in the membrane, shifting the equilibrium concentrations of peptide aggregate assemblies in the membrane to favor greater numbers of larger, increasingly more conductive pores. It also increased the relaxation time constants for pore formation and decay, and enhanced short-term facilitation and depression of the switching characteristics of the device. Modulating these thresholds globally and independently of alamethicin concentration and applied voltage will enable the assembly of neuromorphic computational circuitry with enhanced functionality. Impact statement We describe how to use pH as a modulatory “interneuron” that changes the voltage-dependent memristance of alamethicin ion channels in lipid bilayers by changing the structure and dynamical properties of the bilayer. Having the ability to independently control the threshold levels for pore conduction from voltage or ion channel concentration enables additional levels of programmability in a neuromorphic system. In this article, we note that barriers to conduction from membrane-bound ion channels can be lowered by reducing solution pH, resulting in higher currents, and enhanced short-term learning behavior in the form of paired-pulse facilitation. Tuning threshold values with environmental variables, such as pH, provide additional training and learning algorithms that can be used to elicit complex functionality within spiking neural networks. Graphical abstract 
    more » « less
  3. Pannexin 1 (Panx1) forms large-pore, single-membrane channels that connect the intracellular and extracellular environments, permitting the passage of ions and small molecules such as ATP. Panx1 channels are involved in diverse signaling pathways that contribute to various physiological processes, including sensory processing, although their precise mechanisms of action remain incompletely understood. This study reveals a Panx1-mediated mechanism regulating visual signal processing in the amphibian retina. Using immunolabeling and confocal imaging, we localized Panx1 channels in the cone-dominated On-bipolar cells, specifically at both somas and axon terminals. Whole-cell patch-clamp recordings showed that these channels have high permeability to Cl⁻ ions, which can be blocked by10Panx1 peptide, carbenoxolone, and mefloquine, all recognized as Panx1 inhibitors. Blocking Panx1 channels or reducing external Cl⁻ concentrations significantly increased bright light-induced delayed spontaneous excitatory responses in ganglion cells, indicating an inhibitory role of Panx1 channels at the bipolar cell synaptic release. These delayed spontaneous responses in ganglion cells, known as rebound currents, are associated with afterimage signals in the retina. Our findings suggest that Panx1 channels help prevent over-excitation associated with bright light-induced afterimage phenomena. 
    more » « less
  4. Abstract C. elegansneurons were thought to be non-spiking until our recent discovery of action potentials in the sensory neuron AWA; however, the extent to which theC. elegansnervous system relies on analog or digital coding is unclear. Here we show that the enteric motor neurons AVL and DVB fire synchronous all-or-none calcium-mediated action potentials following the intestinal pacemaker during the rhythmicC. elegansdefecation behavior. AVL fires unusual compound action potentials with each depolarizing calcium spike mediated by UNC-2 followed by a hyperpolarizing potassium spike mediated by a repolarization-activated potassium channel EXP-2. Simultaneous behavior tracking and imaging in free-moving animals suggest that action potentials initiated in AVL propagate along its axon to activate precisely timed DVB action potentials through the INX-1 gap junction. This work identifies a novel circuit of spiking neurons inC. elegansthat uses digital coding for long-distance communication and temporal synchronization underlying reliable behavioral rhythm. 
    more » « less
  5. Abstract Brain‐inspired (or neuromorphic) computing circumvents costly bottlenecks in conventional Von Neumann architectures by collocating memory and processing. This is accomplished through dynamic material architectures, strengthening or weakening internal conduction pathways similar to synaptic connections within the brain. A new class of neuromorphic materials approximates synaptic interfaces using lipid membranes assembled via the droplet interface bilayer (DIB) technique. These DIB membranes have been studied as novel memristors or memcapacitors owing to the soft, reconfigurable nature of both the lipid membrane geometry and the embedded ion‐conducting channels. In this work, a biomolecular approach to neuromorphic materials is expanded frommodel synapsesto acharge‐integrating model neuron. In these serial membrane networks, it is possible to create distributions of voltage‐sensitive gates capable of trapping ionic charge. This trapped charge creates transmembrane potential differences that drive changes in the system's net capacitance through electrowetting, providing a synaptic weight that changes in response to the history and timing of input signals. This fundamental change from interfacial memory (dimensions of the membrane) to internal memory (charge trapped within the droplets) provides a functional plasticity capable of multiple weights, longer‐term retention roughly an order of magnitude greater than memory stored in the membranes alone, and programming‐erasure. 
    more » « less