skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Investigation of Taper Angle and Airflow Rate on Air-Injected Bubble Squeezing in a Tapered Microgap
Abstract Squeezing bubbles in a tapered microgap has proved to be effective for improving flow stability in flow boiling. A previous study from our research group has successfully demonstrated using tapered microgap for transforming pool boiling into a self-sustained flow boiling-like system for cooling CPU through thermosiphon. To overcome the imaging challenges with nucleating vapor bubbles, the present work investigates the squeezing behaviour of air-injected bubbles between a tapered microgap with taper angles of 5°, 10°, and 15°. The air bubbles are injected at a rate of 3 ml/min, 15ml/min, and 30 ml/min in a pool of water. The bubble squeezing is recorded at 2000fps using a Photron high-speed camera. The experimental analysis compares the displacement and velocity of the advancing and receding bubble interfaces. The analysis found that in certain test cases, multiple bubbles coalesced while exiting the tapered microgap. In all the test cases, the receding interface of the bubble slingshots after detaching pushes the bubble out of the tapered microgap. The result from the current study provides an insight into the bubble flow and squeezing behavior that can be used for optimizing taper microgap geometries to enhance critical heat flux and heat transfer coefficient of two-phase, and air-injected single-phase heat transfer systems.  more » « less
Award ID(s):
2022614
PAR ID:
10508453
Author(s) / Creator(s):
;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8670-0
Format(s):
Medium: X
Location:
Columbus, Ohio, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Nucleation and bubble dynamics on a heater surface contribute to high heat transfer rate in pool boiling. Introducing two-phase flow in narrow channels further improves heat transfer. Use of expanding taper microgap geometry further enhances heat transfer, and proper balancing of taper angles and flow lengths leads to self-sustained flow boiling in tapered microgap geometries. This paper focuses on understanding the underlying enhancement mechanism by studying the bubble behavior as they expand and accelerate in the direction of increased taper. The present study conducts a 2D simulation analysis of bubble growth in tapered microgaps with numerical simulations to identify the effect of the fluid properties and tapered angle in the bubble and fluid dynamics behavior. Ansys-Fluent is customized with user-defined-functions (UDFs) accounting for the interfacial heat and mass transport, including a sharp interface and direct calculation of mass transfer with temperature gradients. The study was conducted using air injection and boiling simulation from the conception to the departure of a bubble. The tapered angles were 5°, 10°, and 15°, with flowrates between 3 ml/min to 30 ml/min, 1 mm air inlet, and at 1 mm distance from the convergent end. The departure time of 10 subsequent bubbles was recorded to check the configuration with the quickest bubble removal. A critical flowrate and surface tension region was established for the escape direction of the bubble. In addition, the numerical simulation considered the tapered microgap with a nucleating bubble at atmospheric conditions with a wall superheats of 5 K. The results show that the bubble growing over the heated surface creates fluid circulations and interfacial conditions that suppress the thermal boundary layer leading to an increased local heat transfer coefficient within a range of 1 mm from the interface. 
    more » « less
  2. Heat transfer due to the convective boiling mechanism in the microchannel plays an important role in heat transfer during boiling. Therefore, it is relevant to find ways to manipulate the vapor bubbles such that convection heat transfer is enhanced. This numerical study investigates the effects of different geometrical parameters on bubble movement through a micro tapered gap. The objective is to identify an optimal configuration such that the bubble moves at the fastest possible speed when it travels through the micro gap. To conduct this research a model is created using ANSYS-Fluent which uses the Volume of Fluid (VOF) interface tracking method. The multiphase VOF model tracks the air-water interface. A bubble is generated inside the microchannel in which fluid is flowing. The overall domain of the model consists of the surface at the bottom, having an orifice through which the air bubble is generated. Three different cases of an angled tapered surface are created 5°, 10°, and 15°. The airflow rate is kept constant throughout each simulation. Simulation results show the impact of the tapered angle on the bubble’s flow movement and flow direction. Liquid and air velocity contours can be used to analyze the flow. The impact of the taper angles on the movement and flow direction of the air bubble is discussed. It is observed that the performed simulations help to better understand the experimental observation of bubble motion; the simulations give clear evidence of the fluid dynamic behavior along the tapered microchannel. 
    more » « less
  3. Extensive research has been conducted to resolve small-scale microlayer and bubble nucleation and departure processes in flow boiling, building on controlled pool boiling studies. Large-scale two-phase flow structures, such as Taylor bubbles, are known to locally modify transport due to their wakes and varying surrounding liquid film thickness. However, the effect of interaction of such large-scale flow processes with bubble nucleation is not yet well characterized. Wakes may drive premature nucleating bubble departure, or conversely, suppress boiling due to boundary layer quenching, significantly affecting overall heat transfer. To explore such phenomena, a two-phase flow boiling visualization facility is developed to collect simultaneous high-speed visualization and infrared (IR) thermal imaging temperature distribution data. The test cell channel is 420 mm long with a 10 mm × 10 mm internal square-cross section. A transparent conductive indium tin oxide (ITO) coated sapphire window serves as a heater and IR interface for measuring the internal wall temperature. The facility is charged with a low boiling point fluid (HFE7000) to reduce uncertainties from heat loss to the laboratory environment. Vertical saturated flow boiling wake-nucleation interaction experiments are performed for varying liquid volume flow rates (0.5 − 1.5 L min-1, laminar-to-turbulent Re) and heat fluxes (0 − 100 kW m-2). Discrete vapor slugs are injected to explore interactions with nucleate boiling processes. By measuring film heater power, surface temperature distributions, and pressures, local instantaneous heat transfer coefficients (HTC) can be obtained. Results will be applied to assess simulations at matched conditions for void fraction, and size statistics of flow structures. 
    more » « less
  4. Two-phase thermal management offers cooling performance enhancement by an order of magnitude higher than single-phase flow due to the latent heat associated with phase change. Among the modes of phase-change, boiling can effectively remove massive amounts of heat flux from the surface by employing structured or 3D microporous coatings to significantly enlarge the interfacial surface area for improved heat transfer rate as well as increase the number of potential sites for bubble nucleation and departure. The bubble dynamics during pool boiling are often considered to be essential in predicting heat transfer performance, causing it to be a field of significant interest. While prior investigations seek to modulate the bubble dynamics through either active (e.g., surfactants, electricity) or passive means (e.g., surface wettability, microstructures), the utilization of an ordered microporous architecture to instigate desirable liquid and vapor flow field has been limited. Here, we investigate the bubble dynamics using various spatial patterns of inverse opal channels to induce preferential heat and mass flow site in highly-interconnected microporous media. A fully-coated inverse opal surface demonstrates the intrinsic boiling effects of a uniform microporous coating, which exhibits 156% enhancement in heat transfer coefficient in comparison to the polished silicon surface. The boiling heat transfer performances of spatially-variant inverse opal channels significantly differ based on the pitch spacings between the microporous channels, which dictate the bubble coalescent behaviors and bubble departure characteristics. The elucidated boiling heat transfer performances will provide engineering guidance toward designing optimal two-phase thermal management devices. 
    more » « less
  5. Abstract Power intensification and miniaturization of electronics and energy systems are causing a critical challenge for thermal management. Single-phase heat transfer mechanisms including natural and forced convection of air and liquids cannot meet the ever-increasing demands. Two-phase heat transfer modes, such as evaporation, pool boiling, flow boiling, have much higher cooling capacities but are limited by a variety of practical instabilities, e.g., the critical heat flux (CHF), aka departure from nucleate boiling (DNB) in the nuclear industry, flow maldistribution, flow reversal, among others. These instabilities are often triggered suddenly during normal operation, and if not identified and mitigated in time, will lead to overheating issues and detrimental device failures. For example, when CHF is triggered during pool boiling, the device temperature can ramp up in the order of 150 °C/min. It is thus critical to implement real-time detection and mitigation algorithms for two-phase cooling. In the present work, we have developed an accurate and reliable technology for fault detection of high-performance two-phase cooling systems by coupling acoustic emission (AE) with multimodal fusion using deep learning. We have leveraged the contact AE sensor attached to the heater and hydrophones immersed in the working fluid to enable non-invasive fault detection. 
    more » « less