We establish a tantalizing symmetry of certain numbers refining the Narayana numbers. In terms of Dyck paths, this symmetry is interpreted in the following way: if $$w_{n,k,m}$$ is the number of Dyck paths of semilength $$n$$ with $$k$$ occurrences of $UD$ and $$m$$ occurrences of $UUD$, then $$w_{2k+1,k,m}=w_{2k+1,k,k+1-m}$$. We give a combinatorial proof of this fact, relying on the cycle lemma, and showing that the numbers $$w_{2k+1,k,m}$$ are multiples of the Narayana numbers. We prove a more general fact establishing a relationship between the numbers $$w_{n,k,m}$$ and a family of generalized Narayana numbers due to Callan. A closed-form expression for the even more general numbers $$w_{n,k_{1},k_{2},\ldots, k_{r}}$$ counting the semilength-$$n$$ Dyck paths with $$k_{1}$$ $UD$-factors, $$k_{2}$$ $UUD$-factors, $$\ldots$$, and $$k_{r}$$ $$U^{r}D$$-factors is also obtained, as well as a more general form of the discussed symmetry for these numbers in the case when all rise runs are of certain minimal length. Finally, we investigate properties of the polynomials $$W_{n,k}(t)= \sum_{m=0}^k w_{n,k,m} t^m$$, including real-rootedness, $$\gamma$$-positivity, and a symmetric decomposition. 
                        more » 
                        « less   
                    
                            
                            Promotion for fans of Dyck paths
                        
                    
    
            We construct an injection from the set of r-fans of Dyck paths of length n into the set of chord diagrams on [n] that intertwines promotion and rotation. This is done in two different ways, namely as fillings of promotion matrices and in terms of Fomin growth diagrams. Our analysis uses the fact that r-fans of Dyck paths can be viewed as highest weight elements of weight zero in crystals of type Br, which in turn can be analyzed using virtual crystals. On the level of Fomin growth diagrams, the virtualization process corresponds to the Roby–Krattenthaler blow up construction. Our construction generalizes to vacillating tableaux as well. We give a cyclic sieving phenomenon on r-fans of Dyck paths using the promotion action. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2053350
- PAR ID:
- 10508526
- Publisher / Repository:
- Séminaire Lotharingien de Combinatoire
- Date Published:
- Journal Name:
- Seminaire Lotharingien de Combinatoire
- Volume:
- 89B
- Issue:
- 2023
- ISSN:
- 1286-4889
- Page Range / eLocation ID:
- 20, 12pp.
- Format(s):
- Medium: X Other: pdf
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Chromatic symmetric functions are well-studied symmetric functions in algebraic combinatorics that generalize the chromatic polynomial and are related to Hessenberg varieties and diagonal harmonics. Motivated by the Stanley--Stembridge conjecture, we show that the allowable coloring weights for indifference graphs of Dyck paths are the lattice points of a permutahedron Pλ, and we give a formula for the dominant weight λ. Furthermore, we conjecture that such chromatic symmetric functions are Lorentzian, a property introduced by Brändén and Huh as a bridge between discrete convex analysis and concavity properties in combinatorics, and we prove this conjecture for abelian Dyck paths. We extend our results on the Newton polytope to incomparability graphs of (3+1)-free posets, and we give a number of conjectures and results stemming from our work, including results on the complexity of computing the coefficients and relations with the ζ map from diagonal harmonics.more » « less
- 
            Dyck-reachability is a fundamental formulation for program analysis, which has been widely used to capture properly-matched-parenthesis program properties such as function calls/returns and field writes/reads. Bidirected Dyck-reachability is a relaxation of Dyck-reachability on bidirected graphs where each edge u → ( i v labeled by an open parenthesis “( i ” is accompanied with an inverse edge v → ) i u labeled by the corresponding close parenthesis “) i ”, and vice versa. In practice, many client analyses such as alias analysis adopt the bidirected Dyck-reachability formulation. Bidirected Dyck-reachability admits an optimal reachability algorithm. Specifically, given a graph with n nodes and m edges, the optimal bidirected Dyck-reachability algorithm computes all-pairs reachability information in O ( m ) time. This paper focuses on the dynamic version of bidirected Dyck-reachability. In particular, we consider the problem of maintaining all-pairs Dyck-reachability information in bidirected graphs under a sequence of edge insertions and deletions. Dynamic bidirected Dyck-reachability can formulate many program analysis problems in the presence of code changes. Unfortunately, solving dynamic graph reachability problems is challenging. For example, even for maintaining transitive closure, the fastest deterministic dynamic algorithm requires O ( n 2 ) update time to achieve O (1) query time. All-pairs Dyck-reachability is a generalization of transitive closure. Despite extensive research on incremental computation, there is no algorithmic development on dynamic graph algorithms for program analysis with worst-case guarantees. Our work fills the gap and proposes the first dynamic algorithm for Dyck reachability on bidirected graphs. Our dynamic algorithms can handle each graph update ( i.e. , edge insertion and deletion) in O ( n ·α( n )) time and support any all-pairs reachability query in O (1) time, where α( n ) is the inverse Ackermann function. We have implemented and evaluated our dynamic algorithm on an alias analysis and a context-sensitive data-dependence analysis for Java. We compare our dynamic algorithms against a straightforward approach based on the O ( m )-time optimal bidirected Dyck-reachability algorithm and a recent incremental Datalog solver. Experimental results show that our algorithm achieves orders of magnitude speedup over both approaches.more » « less
- 
            Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)The k-Detour problem is a basic path-finding problem: given a graph G on n vertices, with specified nodes s and t, and a positive integer k, the goal is to determine if G has an st-path of length exactly dist(s,t) + k, where dist(s,t) is the length of a shortest path from s to t. The k-Detour problem is NP-hard when k is part of the input, so researchers have sought efficient parameterized algorithms for this task, running in f(k)poly(n) time, for f(⋅) as slow-growing as possible. We present faster algorithms for k-Detour in undirected graphs, running in 1.853^k poly(n) randomized and 4.082^kpoly(n) deterministic time. The previous fastest algorithms for this problem took 2.746^k poly(n) randomized and 6.523^k poly(n) deterministic time [Bezáková-Curticapean-Dell-Fomin, ICALP 2017]. Our algorithms use the fact that detecting a path of a given length in an undirected graph is easier if we are promised that the path belongs to what we call a "bipartitioned" subgraph, where the nodes are split into two parts and the path must satisfy constraints on those parts. Previously, this idea was used to obtain the fastest known algorithm for finding paths of length k in undirected graphs [Björklund-Husfeldt-Kaski-Koivisto, JCSS 2017], intuitively by looking for paths of length k in randomly bipartitioned subgraphs. Our algorithms for k-Detour stem from a new application of this idea, which does not involve choosing the bipartitioned subgraphs randomly. Our work has direct implications for the k-Longest Detour problem, another related path-finding problem. In this problem, we are given the same input as in k-Detour, but are now tasked with determining if G has an st-path of length at least dist(s,t)+k. Our results for k-Detour imply that we can solve k-Longest Detour in 3.432^k poly(n) randomized and 16.661^k poly(n) deterministic time. The previous fastest algorithms for this problem took 7.539^k poly(n) randomized and 42.549^k poly(n) deterministic time [Fomin et al., STACS 2022].more » « less
- 
            Many program-analysis problems can be formulated as graph-reachability problems. Interleaved Dyck language reachability ( InterDyck -reachability) is a fundamental framework to express a wide variety of program-analysis problems over edge-labeled graphs. The InterDyck language represents an intersection of multiple matched-parenthesis languages (i.e., Dyck languages). In practice, program analyses typically leverage one Dyck language to achieve context-sensitivity, and other Dyck languages to model data dependencies, such as field-sensitivity and pointer references/dereferences. In the ideal case, an InterDyck -reachability framework should model multiple Dyck languages simultaneously . Unfortunately, precise InterDyck -reachability is undecidable. Any practical solution must over-approximate the exact answer. In the literature, a lot of work has been proposed to over-approximate the InterDyck -reachability formulation. This article offers a new perspective on improving both the precision and the scalability of InterDyck -reachability: we aim at simplifying the underlying input graph G . Our key insight is based on the observation that if an edge is not contributing to any InterDyck -paths, we can safely eliminate it from G . Our technique is orthogonal to the InterDyck -reachability formulation and can serve as a pre-processing step with any over-approximating approach for InterDyck -reachability. We have applied our graph simplification algorithm to pre-processing the graphs from a recent InterDyck -reachability-based taint analysis for Android. Our evaluation of three popular InterDyck -reachability algorithms yields promising results. In particular, our graph-simplification method improves both the scalability and precision of all three InterDyck -reachability algorithms, sometimes dramatically.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    