skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2053350

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the lattice of submonoids of the uniform block permutation monoid containing the symmetric group (which is its group of units). We prove that this lattice is distributive under union and intersection by relating the submonoids containing the symmetric group to downsets in a new partial order on integer partitions. Furthermore, we show that the sizes of the$$\mathscr {J}$$ J -classes of the uniform block permutation monoid are sums of squares of dimensions of irreducible modules of the monoid algebra. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract We introduce the immersion poset$$({\mathcal {P}}(n), \leqslant _I)$$ ( P ( n ) , I ) on partitions, defined by$$\lambda \leqslant _I \mu $$ λ I μ if and only if$$s_\mu (x_1, \ldots , x_N) - s_\lambda (x_1, \ldots , x_N)$$ s μ ( x 1 , , x N ) - s λ ( x 1 , , x N ) is monomial-positive. Relations in the immersion poset determine when irreducible polynomial representations of$$GL_N({\mathbb {C}})$$ G L N ( C ) form an immersion pair, as defined by Prasad and Raghunathan [7]. We develop injections$$\textsf{SSYT}(\lambda , \nu ) \hookrightarrow \textsf{SSYT}(\mu , \nu )$$ SSYT ( λ , ν ) SSYT ( μ , ν ) on semistandard Young tableaux given constraints on the shape of$$\lambda $$ λ , and present results on immersion relations among hook and two column partitions. The standard immersion poset$$({\mathcal {P}}(n), \leqslant _{std})$$ ( P ( n ) , std ) is a refinement of the immersion poset, defined by$$\lambda \leqslant _{std} \mu $$ λ std μ if and only if$$\lambda \leqslant _D \mu $$ λ D μ in dominance order and$$f^\lambda \leqslant f^\mu $$ f λ f μ , where$$f^\nu $$ f ν is the number of standard Young tableaux of shape$$\nu $$ ν . We classify maximal elements of certain shapes in the standard immersion poset using the hook length formula. Finally, we prove Schur-positivity of power sum symmetric functions on conjectured lower intervals in the immersion poset, addressing questions posed by Sundaram [12]. 
    more » « less
  3. Free, publicly-accessible full text available July 29, 2026
  4. We establish a tantalizing symmetry of certain numbers refining the Narayana numbers. In terms of Dyck paths, this symmetry is interpreted in the following way: if $$w_{n,k,m}$$ is the number of Dyck paths of semilength $$n$$ with $$k$$ occurrences of $UD$ and $$m$$ occurrences of $UUD$, then $$w_{2k+1,k,m}=w_{2k+1,k,k+1-m}$$. We give a combinatorial proof of this fact, relying on the cycle lemma, and showing that the numbers $$w_{2k+1,k,m}$$ are multiples of the Narayana numbers. We prove a more general fact establishing a relationship between the numbers $$w_{n,k,m}$$ and a family of generalized Narayana numbers due to Callan. A closed-form expression for the even more general numbers $$w_{n,k_{1},k_{2},\ldots, k_{r}}$$ counting the semilength-$$n$$ Dyck paths with $$k_{1}$$ $UD$-factors, $$k_{2}$$ $UUD$-factors, $$\ldots$$, and $$k_{r}$$ $$U^{r}D$$-factors is also obtained, as well as a more general form of the discussed symmetry for these numbers in the case when all rise runs are of certain minimal length. Finally, we investigate properties of the polynomials $$W_{n,k}(t)= \sum_{m=0}^k w_{n,k,m} t^m$$, including real-rootedness, $$\gamma$$-positivity, and a symmetric decomposition. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  5. Free, publicly-accessible full text available January 1, 2026
  6. It is an important problem in algebraic combinatorics to deduce the Schur function expansion of a symmetric function whose expansion in terms of the fundamental quasisymmetric function is known. For example, formulas are known for the fundamental expansion of a Macdonald symmetric function and for the plethysm of two Schur functions, while the Schur expansions of these expressions are still elusive. Based on work of Egge, Loehr and Warrington, Garsia and Remmel provided a method to obtain the Schur expansion from the fundamental expansion by replacing each quasisymmetric function by a Schur function (not necessarily indexed by a partition) and using straightening rules to obtain the Schur expansion. Here we provide a new method that only involves the coefficients of the quasisymmetric functions indexed by partitions and the quasi-Kostka matrix. As an application, we identify the lexicographically largest term in the Schur expansion of the plethysm of two Schur functions. We provide the Schur expansion of $$s_w[s_h](x,y)$$ for $w=2,3,4$ using novel symmetric chain decompositions of Young's lattice for partitions in a $$w\times h$$ box. For $w=4$, this is the first known combinatorial expression for the coefficient of $$s_{\lambda}$$ in $$s_{w}[s_{h}]$$ for two-row partitions $$\lambda$$, and for $w=3$ the combinatorial expression is new. 
    more » « less
  7. Berkesch, Christine; Brubaker, Benjamin; Musiker, Gregg; Pylyavskyy, Pavlo; Reiner, Victor (Ed.)
    Composing two representations of the general linear groups gives rise to Littlewood’s (outer) plethysm. On the level of characters, this poses the question of finding the Schur expansion of the plethysm of two Schur functions. A combinatorial interpretation for the Schur expansion coefficients of the plethysm of two Schur functions is, in general, still an open problem. We identify a proof technique of combinatorial representation theory, which we call the “s-perp trick”, and point out several examples in the literature where this idea is used. We use the s-perp trick to give algorithms for computing monomial and Schur expansions of symmetric functions. In several special cases, these algorithms are more efficient than those currently implemented in SageMath. 
    more » « less
  8. We construct an injection from the set of r-fans of Dyck paths of length n into the set of chord diagrams on [n] that intertwines promotion and rotation. This is done in two different ways, namely as fillings of promotion matrices and in terms of Fomin growth diagrams. Our analysis uses the fact that r-fans of Dyck paths can be viewed as highest weight elements of weight zero in crystals of type Br, which in turn can be analyzed using virtual crystals. On the level of Fomin growth diagrams, the virtualization process corresponds to the Roby–Krattenthaler blow up construction. Our construction generalizes to vacillating tableaux as well. We give a cyclic sieving phenomenon on r-fans of Dyck paths using the promotion action. 
    more » « less