skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Towards Semantic Exploration of Tables in Scientific Documents
Structured data artifacts such as tables are widely used in scientific literature to organize and concisely communicate important statistical information. Discovering relevant information in these tables remains a significant challenge owing to their structural heterogeneity, dense and often implicit semantics, and diffuse context. This paper describes how we leverage semantic technologies to enable technical experts to search and explore tabular data embedded within scientific documents. We present a system for the on-demand construction of knowledge graphs representing scientific tables (drawn from online scholarly articles hosted by PubMed Central) and for synthesizing tabular responses to semantic search requests against such graphs. We discuss key differentiators in our overall approach, including a two-stage semantic table interpretation that relies on an extensive structural and syntactic characterization of scientific tables and a prototype knowledge discovery engine that uses automatically inferred semantics of scientific tables to serve search requests by potentially fusing information from multiple tables on the fly. We evaluate our system on a real-world dataset of approximately 120,000 tables extracted from over 62,000 COVID-19-related scientific articles.  more » « less
Award ID(s):
2114892
PAR ID:
10508539
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
CEUR Workshop Proceedings
Date Published:
Journal Name:
Workshop on Semantic Technologies for Scientific, Technical and Legal Data, Extended Semantic Web Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synthesizing information from collections of tables embedded within scientific and technical documents is increasingly critical to emerging knowledge-driven applications. Given their structural heterogeneity, highly domain-specific content, and diffuse context, inferring a precise semantic understanding of such tables is traditionally better accomplished through linking tabular content to concepts and entities in reference knowledge graphs. However, existing tabular data discovery systems are not designed to adequately exploit these explicit, human-interpretable semantic linkages. Moreover, given the prevalence of misinformation, the level of confidence in the reliability of tabular information has become an important, often overlooked, factor in the discovery over open datasets. We describe a preliminary implementation of a discovery engine that enables table-based semantic search and retrieval of tabular information from a linked knowledge graph of scientific tables. We discuss the viability of semantics-guided tabular data analysis operations, including on-the-fly table generation under reliability constraints, within discovery scenarios motivated by intelligence production from documents. 
    more » « less
  2. An abundance of biomedical data is generated in the form of clinical notes, reports, and research articles available online. This data holds valuable information that requires extraction, retrieval, and transformation into actionable knowledge. However, this information has various access challenges due to the need for precise machine-interpretable semantic metadata required by search engines. Despite search engines' efforts to interpret the semantics information, they still struggle to index, search, and retrieve relevant information accurately. To address these challenges, we propose a novel graph-based semantic knowledge-sharing approach to enhance the quality of biomedical semantic annotation by engaging biomedical domain experts. In this approach, entities in the knowledge-sharing environment are interlinked and play critical roles. Authorial queries can be posted on the "Knowledge Cafe," and community experts can provide recommendations for semantic annotations. The community can further validate and evaluate the expert responses through a voting scheme resulting in a transformed "Knowledge Cafe" environment that functions as a knowledge graph with semantically linked entities. We evaluated the proposed approach through a series of scenarios, resulting in precision, recall, F1-score, and accuracy assessment matrices. Our results showed an acceptable level of accuracy at approximately 90%. The source code for "Semantically" is freely available at: https://github.com/bukharilab/Semantically 
    more » « less
  3. An abundance of biomedical data is generated in the form of clinical notes, reports, and research articles available online. This data holds valuable information that requires extraction, retrieval, and transformation into actionable knowledge. However, this information has various access challenges due to the need for precise machine-interpretable semantic metadata required by search engines. Despite search engines' efforts to interpret the semantics information, they still struggle to index, search, and retrieve relevant information accurately. To address these challenges, we propose a novel graph-based semantic knowledge-sharing approach to enhance the quality of biomedical semantic annotation by engaging biomedical domain experts. In this approach, entities in the knowledge-sharing environment are interlinked and play critical roles. Authorial queries can be posted on the "Knowledge Cafe," and community experts can provide recommendations for semantic annotations. The community can further validate and evaluate the expert responses through a voting scheme resulting in a transformed "Knowledge Cafe" environment that functions as a knowledge graph with semantically linked entities. We evaluated the proposed approach through a series of scenarios, resulting in precision, recall, F1-score, and accuracy assessment matrices. Our results showed an acceptable level of accuracy at approximately 90%. The source code for "Semantically" is freely available at: https://github.com/bukharilab/Semantically 
    more » « less
  4. Existing techniques for unionable table search define unionability using metadata (tables must have the same or similar schemas) or column-based metrics (for example, the values in a table should be drawn from the same domain). In this work, we introduce the use of semantic relationships between pairs of columns in a table to improve the accuracy of the union search. Consequently, we introduce a new notion of unionability that considers relationships between columns, together with the semantics of columns, in a principled way. To do so, we present two new methods to discover the semantic relationships between pairs of columns. The first uses an existing knowledge base (KB), and the second (which we call a "synthesized KB") uses knowledge from the data lake itself. We adopt an existing Table Union Search benchmark and present new (open) benchmarks that represent small and large real data lakes. We show that our new unionability search algorithm, called SANTOS, outperforms a state-of-the-art union search that uses a wide variety of column-based semantics, including word embeddings and regular expressions. We show empirically that our synthesized KB improves the accuracy of union search by representing relationship semantics that may not be contained in an available KB. This result hints at a promising future of creating synthesized KBs from data lakes with limited KB coverage and using them for union search. 
    more » « less
  5. Existing techniques for unionable table search define unionability using metadata (tables must have the same or similar schemas) or column-based metrics (for example, the values in a table should be drawn from the same domain). In this work, we introduce the use of semantic relationships between pairs of columns in a table to improve the accuracy of union search. Consequently, we introduce a new notion of unionability that considers relationships between columns, together with the semantics of columns, in a principled way. To do so, we present two new methods to discover semantic relationship between pairs of columns. The first uses an existing knowledge base (KB), the second (which we call a “synthesized KB”) uses knowledge from the data lake itself. We adopt an existing Table Union Search benchmark and present new (open) benchmarks that represent small and large real data lakes. We show that our new unionability search algorithm, called SANTOS, outperforms a state- of-the-art union search that uses a wide variety of column-based semantics, including word embeddings and regular expressions. We show empirically that our synthesized KB improves the accuracy of union search by representing relationship semantics that may not be contained in an available KB. This result hints at a promising future of creating a synthesized KBs from data lakes with limited KB coverage and using them for union search. 
    more » « less