skip to main content


This content will become publicly available on March 1, 2025

Title: Improving Simulation of Gas‐Particle Partitioning of Atmospheric Mercury Using CMAQ‐newHg‐Br v2
Abstract

Mercury (Hg) is a global pollutant whose atmospheric deposition is a major input to the terrestrial and oceanic ecosystems. Gas‐particle partitioning (GPP) of gaseous oxidized mercury (GOM) redistributes speciated Hg between gas and particulate phase and can subsequently alter Hg deposition flux. Most 3‐dimensional chemical transport models either neglected the Hg GPP process or parameterized it with measurement data limited in time and space. In this study, CMAQ‐newHg‐Br (Ye et al., 2018,https://doi.org/10.1002/2017ms001161) was updated to CMAQ‐newHg‐Br v2 by implementing a new GPP scheme and the most up‐to‐date Hg redox chemistry and was run for the northeastern United States over January‐November 2010. CMAQ‐newHg‐Br v2 reproduced the measured spatiotemporal distributions of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) concentrations and Hg wet deposition flux within reasonable ranges and simulated dry deposition flux in agreement with previous studies. The GPP scheme improved the simulation of PBM via increasing winter‐, spring‐ and fall‐time PBM concentrations by threefold. It also improved simulated Hg wet deposition flux with an increase of 2.1 ± 0.7 μgm2in the 11‐month accumulated amount, offsetting half of the decreasing effect of the updated chemistry (−4.2 ± 1.8 μgm2). Further, the GPP scheme captured the observedKp‐T relationship as reported in previous studies without using measurement data and showed advantages at night and in rural/remote areas where existing empirical parameterizations failed. Our study demonstrated CMAQ‐newHg‐Br v2 a promising assessment tool to quantify impacts of climate change and emission reduction policy on Hg cycling.

 
more » « less
Award ID(s):
2126097
NSF-PAR ID:
10508550
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
16
Issue:
3
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The polarFregion ionosphere frequently exhibits sporadic variability (e.g., Meek, 1949,https://doi.org/10.1029/JZ054i004p00339; Hill, 1963,https://doi.org/10.1175/1520‐0469(1963)020<0492:SEOLII>2.0.CO;2). Recent satellite data analysis (Noja et al., 2013,https://doi.org/10.1002/rds.20033; Chartier et al., 2018,https://doi.org/10.1002/2017JA024811) showed that the high‐latitudeFregion ionosphere exhibits sporadic enhancements more frequently in January than in July in both the northern and southern hemispheres. The same pattern has been seen in statistics of the degradation and total loss of GPS service onboard low‐Earth orbit satellites (Xiong et al. 2018,https://doi.org/10.5194/angeo‐36‐679‐2018). Here, we confirm the existence of this annual pattern using ground GPS‐based images of TEC from the MIDAS algorithm. Images covering January and July 2014 confirm that the high‐latitude (>70 MLAT)Fregion exhibits a substantially larger range of values in January than in July in both the northern and southern hemispheres. The range of TEC values observed in the polar caps is 38–57 TECU (north‐south) in January versus 25–37 TECU in July. First‐principle modeling using SAMI3 reproduces this pattern, and indicates that it is caused by an asymmetry in plasma levels (30% higher in January than in July across both polar caps), as well as 17% longer O+plasma lifetimes in northern hemisphere winter, compared to southern hemisphere winter.

     
    more » « less
  2. Abstract

    Zhang (2019,https://doi.org/10.1002/wrcr.v54.4) criticizes several of the assumptions and parameter choices of the model of Kuil et al. (2018,https://doi.org/10.1002/2017WR021420) and claims that, due to an inconsistency in the irrigation equation, the key findings should be interpreted with much caution. We address each of the comments and show that the conclusions of Kuil et al. (2018,https://doi.org/10.1002/2017WR021420) remain fully valid.

     
    more » « less
  3. Abstract

    We reply to the comment by S. Pan and G. Frenking who challenged our interpretation of the Na:→BH3dative bond in the recently synthesized NaBH3cluster. Our conclusion remains the same as that in our original paper (https://doi.org/10.1002/anie.201907089andhttps://doi.org/10.1002/ange.201907089). This conclusion is additionally supported by the energetic pathways and NBO charges calculated at UCCSD and CASMP2(4,4) levels of theory. We also discussed the suitability of the Laplacian of electron density (QTAIM) and Adaptive Natural Density Partitioning (AdNDP) method for bond type assignment. It seems that AdNDP yields more sensible results. This discussion reveals that the complex realm of bonding is full of semantic inconsistencies, and we invite experimentalists and theoreticians to elaborate this topic and find solutions incorporating different views on the dative bond.

     
    more » « less
  4. Abstract

    We reply to the comment by S. Pan and G. Frenking who challenged our interpretation of the Na:→BH3dative bond in the recently synthesized NaBH3cluster. Our conclusion remains the same as that in our original paper (https://doi.org/10.1002/anie.201907089andhttps://doi.org/10.1002/ange.201907089). This conclusion is additionally supported by the energetic pathways and NBO charges calculated at UCCSD and CASMP2(4,4) levels of theory. We also discussed the suitability of the Laplacian of electron density (QTAIM) and Adaptive Natural Density Partitioning (AdNDP) method for bond type assignment. It seems that AdNDP yields more sensible results. This discussion reveals that the complex realm of bonding is full of semantic inconsistencies, and we invite experimentalists and theoreticians to elaborate this topic and find solutions incorporating different views on the dative bond.

     
    more » « less
  5. Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere–ocean Hg0HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting chemical lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the  ∼ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg0+HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII–organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere. The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM–ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0–30%). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO2 and HO2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80% of HgII deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for HgII reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO2 and NO2 for second-stage HgBr oxidation.

     
    more » « less