skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gaussian representation of coarse-grained interactions of liquids: Theory, parametrization, and transferability
Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from effective CG interactions. We then introduce Gaussian basis functions corresponding to the system’s characteristic length by linking these Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG models of liquids with enhanced extensibility.  more » « less
Award ID(s):
2102677
PAR ID:
10508664
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Journal of Chemical Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
18
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. By averaging over atomic details, coarse-grained (CG) models provide profound computational and conceptual advantages for studying soft materials. In particular, bottom-up approaches develop CG models based upon information obtained from atomically detailed models. At least in principle, a bottom-up model can reproduce all the properties of an atomically detailed model that are observable at the resolution of the CG model. Historically, bottom-up approaches have accurately modeled the structure of liquids, polymers, and other amorphous soft materials, but have provided lower structural fidelity for more complex biomolecular systems. Moreover, they have also been plagued by unpredictable transferability and a poor description of thermodynamic properties. Fortunately, recent studies have reported dramatic advances in addressing these prior limitations. This Perspective reviews this remarkable progress, while focusing on its foundation in the basic theory of coarse-graining. In particular, we describe recent insights and advances for treating the CG mapping, for modeling many-body interactions, for addressing the state-point dependence of effective potentials, and even for reproducing atomic observables that are beyond the resolution of the CG model. We also outline outstanding challenges and promising directions in the field. We anticipate that the synthesis of rigorous theory and modern computational tools will result in practical bottom-up methods that not only are accurate and transferable but also provide predictive insight for complex systems. 
    more » « less
  2. Low resolution coarse-grained (CG) models provide remarkable com- putational and conceptual advantages for simulating soft materials. In principle, bottom-up CG models can reproduce all structural and thermodynamic properties of atomically detailed models that can be observed at the resolution of the CG model. This review discusses recent progress in developing theory and computational methods for achieving this promise. We first briefly review variational approaches for parameterizing interaction potentials and their relationship to ma- chine learning methods. We then discuss recent approaches for si- multaneously improving both the transferability and thermodynamic properties of bottom-up models by rigorously addressing the density- and temperature-dependence of these potentials. We also briefly dis- cuss exciting progress in modeling high resolution observables with low- resolution CG models. More generally, we highlight the essential role of the bottom-up framework not only for fundamentally understand- ing the limitations of prior CG models, but also for developing robust computational methods that resolve these limitations in practice. 
    more » « less
  3. Coarse-grained (CG) modeling has gained significant attention in recent years due to its wide applicability in enhancing the spatiotemporal scales of molecular simulations. While CG simulations, often performed with Hamiltonian mechanics, faithfully recapitulate structural correlations at equilibrium, they lead to ambiguously accelerated dynamics. In Paper I [J. Jin, K. S. Schweizer, and G. A. Voth, J. Chem. Phys. 158(3), 034103 (2023)], we proposed the excess entropy scaling relationship to understand the CG dynamics. Then, in Paper II [J. Jin, K. S. Schweizer, and G. A. Voth, J. Chem. Phys. 158(3), 034104 (2023)], we developed a theory to map the CG system into a dynamically consistent hard sphere system to analytically derive an expression for fast CG dynamics. However, many chemical and physical systems do not exhibit hard sphere-like behavior, limiting the extensibility of the developed theory. In this paper, we aim to generalize the theory to the non-hard sphere system based on the Weeks–Chandler–Andersen perturbation theory. Since non-hard sphere-like CG interactions affect the excess entropy term as it deviates from the hard sphere description, we explicitly account for the extra entropy to correct the non-hard sphere nature of the system. This approach is demonstrated for two different types of interactions seen in liquids, and we further provide a generalized description for any CG models using the generalized Gaussian CG models using Gaussian basis sets. Altogether, this work allows for extending the range and applicability of the hard sphere CG dynamics theory to a myriad of CG liquids. 
    more » « less
  4. Bottom-up coarse-grained (CG) modeling is an effective means of bypassing the limited spatiotemporal scales of conventional atomistic molecular dynamics while retaining essential information from the atomistic model. A central challenge in CG modeling is the trade-off between accuracy and efficiency, as the inclusion of often pivotal many-body interaction terms in the CG force-field renders simulation markedly slower than simple pairwise models. The Ultra Coarse-Graining (UCG) method incorporates many-body terms through discrete internal state variables that modulate the CG force-field according to, e.g., changes in local environment when substantial chemical heterogeneities exist. However, assigning optimal internal states systematically from atomistic simulation data, as well as the practical application of bottom-up UCG theory to biomolecular systems, remain open problems. We develop two synergistic methods to aid in the development of UCG models that can capture inhomogeneities in atomistic systems such as those induced by phase coexistence. The first method establishes the systematic construction of UCG force-fields from a relative entropy minimization principle, while the second method utilizes machine-learning to obtain optimal local order parameters for enhanced model efficiency and transferability. We apply these methods to a methanol liquid–vapor interface and the ripple phase of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipid bilayer and demonstrate that UCG modeling alone recapitulates aspects of phase coexistence that are otherwise not observed in CG modeling. 
    more » « less
  5. Coarse-grained (CG) molecular dynamics can be a powerful method for probing complex processes. However, most CG force fields use pairwise nonbonded interaction potentials sets, which can limit their ability to capture complex multi-body phenomena such as the hydrophobic effect. As the hydrophobic effect primarily manifests itself due to the nonpolar solute affecting the nearby hydrogen bonding network in water, capturing such effects using a simple one CG site or “bead” water model is a challenge. In this work, we systematically test the ability of CG one site water models for capturing critical features of the solvent environment around a hydrophobe as well as the potential of mean force (PMF) of neopentane association. We study two bottom-up models: a simple pairwise (SP) force-matched water model constructed using the multiscale coarse-graining method and the Bottom-Up Many-Body Projected Water (BUMPer) model, which has implicit three-body correlations. We also test the top-down monatomic (mW) and the Machine Learned mW (ML-mW) water models. The mW models perform well in capturing structural correlations but not the energetics of the PMF. BUMPer outperforms SP in capturing structural correlations and also gives an accurate PMF in contrast to the two mW models. Our study highlights the importance of including three-body interactions in CG water models, either explicitly or implicitly, while in general highlighting the applicability of bottom-up CG water models for studying hydrophobic effects in a quantitative fashion. This assertion comes with a caveat, however, regarding the accuracy of the enthalpy–entropy decomposition of the PMF of hydrophobe association. 
    more » « less