Abstract Deterministic earthquake prediction remains elusive, but time‐dependent probabilistic seismicity forecasting seems within reach thanks to the development of physics‐based models relating seismicity to stress changes. Difficulties include constraining the earthquake nucleation model and fault initial stress state. Here, we analyze induced earthquakes from the Groningen gas field, where production is strongly seasonal, and seismicity began 3 decades after production started. We use the seismicity response to stress variations to constrain the earthquake nucleation process and calibrate models for time‐dependent forecasting of induced earthquakes. Remarkable agreements of modeled and observed seismicity are obtained when we consider (a) the initial strength excess, (b) the finite duration of earthquake nucleation, and (c) the seasonal variations of gas production. We propose a novel metric to quantify the nucleation model's ability to capture the damped amplitude and the phase of the seismicity response to short‐timescale (seasonal) stress variations which allows further tightening the model's parameters.
more »
« less
Homogenized gridded dataset for drought and hydrometeorological modeling for the continental United States
Abstract We present a novel data set for drought in the continental US (CONUS) built to enable computationally efficient spatio-temporal statistical and probabilistic models of drought. We converted drought data obtained from the widely-used US Drought Monitor (USDM) from its native geo-referenced polygon format to a 0.5 degree regular grid. We merged known environmental drivers of drought, including those obtained from the North American Land Data Assimilation System (NLDAS-2), US Geological Survey (USGS) streamflow data, and National Oceanic and Atmospheric Administration (NOAA) teleconnections data. The resulting data set permits statistical and probabilistic modeling of drought with explicit spatial and/or temporal dependence. Such models could be used to forecast drought at short-range, seasonal to sub-seasonal, and inter-annual timescales with uncertainty, extending the reach and value of the current US Drought Outlook from the National Weather Service Climate Prediction Center. This novel data product provides the first common gridded dataset that includes critical variables used to inform hydrological and meteorological drought.
more »
« less
- Award ID(s):
- 2151881
- PAR ID:
- 10508716
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The hot deserts of the southwestern United States are experiencing increased frequency, severity, and duration of drought due to anthropogenic climate change. Plant communities in these deserts differ in composition, specifically the abundance of annual and perennial species, which could differentiate responses among these ecosystems to drought. Thus, identifying how these desert plant communities respond to prolonged, severe drought is critical to assess vulnerability to climate change. We measured the response of herbaceous plant communities to 4 years of experimentally imposed severe drought in Chihuahuan, Sonoran, and Mojave Desert sites in the southwestern US.We imposed year‐round passive rain exclusion treatments with a 66% reduction in ambient rainfall for 4 years at two sites in each of the three US hot deserts. We measured plant species composition and abundance in treatment and control plots during the peak growing season.Vegetative cover increased with seasonal precipitation at all six sites. Species richness and evenness varied in response to drought across all sites over the duration of the experiment. At three of the six sites, species richness increased with seasonal precipitation and at three sites species evenness decreased with seasonal precipitation.In general, we found that community structure was linked to seasonal precipitation more so than cumulative drought in these herbaceous communities of southwestern US deserts, and that these desert communities are highly resilient following prolonged, extreme drought.more » « less
-
Abstract Drought poses a major threat to agricultural production and food security. This study evaluates the changes in drought-induced crop yield loss risk for six crops (alfalfa, barley, corn, soybean, spring wheat, and winter wheat) between 1971–2000 and 1991–2020 across the contiguous US. Using a copula-based probabilistic framework, our results reveal a spatially heterogeneous change in yield risk to meteorological droughts, which varies with crop types. Regional analyses identify the largest temporal decline in yield risk in the Southeast and Upper Midwest, while the Northwest and South show an increase in risk. Among the considered anthropogenic and climatic drivers of crop productivity, changes in climatic variables such as high temperatures (e.g., killing degree days), vapor pressure deficit and precipitation show significantly stronger associations with changes in yield risk than irrigated area and nitrogen fertilizer application. Among the counties that observe drier drought events, only 55% exhibit an increase in crop yield loss risk due to drier droughts. The rest 45% show a decrease in yield loss risk due to mediation of favorable climatic and anthropogenic factors. Alarmingly, more than half (for barley and spring wheat), and one-third (for alfalfa, corn, soybean and winter wheat) of that the risk increasing regions have outsized influence on destabilizing national crop production. The findings provide valuable insights for policymakers, agricultural stakeholders, and decision-makers in terms of the potential ways and locations to be prioritized for enhancing local and national agricultural resilience and ensuring food security.more » « less
-
Kneib, T; Thorarinsdottir, T (Ed.)Abstract The US Drought Monitor is the leading drought monitoring tool in the United States. Updated weekly and freely distributed, it records the drought conditions as geo-referenced polygons showing one of six ordered levels. These levels are determined by a mixture of quantitative environmental measurements and local expert opinion across the entire United States. At present, forecasts of the Drought Monitor only convey the expected direction of drought development (i.e. worsen, persist, subside) and do not communicate any uncertainty. This limits the utility of forecasts. In this paper, we describe a Bayesian spatio-temporal ordinal hierarchical model for use in modelling and projecting drought conditions. The model is flexible, scalable, and interpretable. By viewing drought data as areal rather than point-referenced, we reduce the cost of sampling from the posterior by avoiding dense matrix inversion. Draws from the posterior predictive distribution produce future forecasts of actual drought levels—rather than only the direction of drought development—and all sources of uncertainty are propagated into the posterior. Spatial random effects and an autoregressive model structure capture spatial and temporal dependence, and help ensure smoothness in forecasts over space and time. The result is a framework for modelling and forecasting drought levels and capturing forecast uncertainty.more » « less
-
Summary Object-oriented data analysis is a fascinating and evolving field in modern statistical science, with the potential to make significant contributions to biomedical applications. This statistical framework facilitates the development of new methods to analyze complex data objects that capture more information than traditional clinical biomarkers. This paper applies the object-oriented framework to analyze physical activity levels, measured by accelerometers, as response objects in a regression model. Unlike traditional summary metrics, we utilize a recently proposed representation of physical activity data as a distributional object, providing a more nuanced and complete profile of individual energy expenditure across all ranges of monitoring intensity. A novel hybrid Fréchet regression model is proposed and applied to US population accelerometer data from National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. The semi-parametric nature of the model allows for the inclusion of nonlinear effects for critical variables, such as age, which are biologically known to have subtle impacts on physical activity. Simultaneously, the inclusion of linear effects preserves interpretability for other variables, particularly categorical covariates such as ethnicity and sex. The results obtained are valuable from a public health perspective and could lead to new strategies for optimizing physical activity interventions in specific American subpopulations.more » « less
An official website of the United States government

