Abstract We recently reported the finding of elementary rising‐tone emissions embedded within each harmonic of magnetosonic waves, by investigating wave electric field waveforms measured by Van Allen Probes. The present study further uncovers a new set of fine structures of magnetosonic waves, namely, each elementary rising‐tone may consist of a series of mini harmonics spaced around the O+gyrofrequency. The measured ion distributions suggest that the proton ring distribution provides free energy to excite the waves, whilst the O+ions suppress the wave growth around multiples of O+gyrofrequency, resulting in the formation of mini harmonics. Further investigation suggests that the warm plasma dispersion relation, that is, the ion Bernstein mode instabilities, may contribute to the formation of mini harmonics. The mini harmonic structure implies a new mechanism of energy redistribution among ion species in space plasmas, potentially providing a new acceleration mechanism for O+ions in the magnetosphere.
more »
« less
Fine Structure of Magnetospheric Magnetosonic Waves: 1. Elementary Rising‐Tone Emissions Within Individual Harmonic
The present study uncovers the fine structures of magnetosonic waves by investigating the EFW waveforms measured by Van Allen Probes. We show that each harmonic of the magnetosonic wave may consist of a series of elementary rising‐tone emissions, implying a nonlinear mechanism for the wave generation. By investigating an elementary rising‐tone magnetosonic wave that spans a wide frequency range, we show that the frequency sweep rate is likely proportional to the wave frequency. We studied compound rising‐tone magnetosonic waves, and found that they typically consist of multiple harmonics in the source region, and may gradually become continuous in frequency as they propagate away from source. Both elementary and compound rising‐tone magnetosonic waves last for ∼1 min which is close to the bounce period of the ring proton distribution, but their relation is not fully understood.
more »
« less
- Award ID(s):
- 2247256
- PAR ID:
- 10508761
- Publisher / Repository:
- Journal of Geophysical Research: Space Physics
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Edition / Version:
- 1
- Volume:
- 129
- Issue:
- 3
- ISSN:
- 2169-9380
- Page Range / eLocation ID:
- e2024JA032462
- Format(s):
- Medium: X Other: pdf
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Electromagnetic ion cyclotron (EMIC) waves are commonly observed in the Earth's magnetosphere and play a significant role in regulating relativistic electron fluxes. The waveform of EMIC waves comprises amplitude‐modulated wave packets, known as “subpackets.” Despite their prevalence, the underlying physics and associated particle dynamics for subpacket formation remain poorly understood. In this study, using Van Allen Probe A observations, we present several rising‐tone EMIC wave events to reveal the downward frequency chirping between adjacent subpackets. By performing a hybrid simulation, we demonstrate for the first time that these wave properties are associated with the oscillation of proton holes in the wave gyrophase space induced by cyclotron resonance. The oscillation modulates the energy transfer between waves and particles, establishing a direct link between subpacket formation in cyclotron waves and nonlinear wave‐particle interactions. This new understanding advances our knowledge of subpacket formation in general and its broader implications in space plasma physics.more » « less
-
Abstract Rapid shear motion of magnetar crust can launch Alfvén waves into the magnetosphere. The dissipation of the Alfvén waves has been theorized to power the X-ray bursts characteristic of magnetars. However, the process by which Alfvén waves convert their energy to X-rays is unclear. Recent work has suggested that energetic fast magnetosonic (fast) waves can be produced as a byproduct of Alfvén waves propagating on curved magnetic field lines; their subsequent dissipation may power X-ray bursts. In this work, we investigate the production of fast waves by performing axisymmetric force-free simulations of Alfvén waves propagating in a dipolar magnetosphere. For Alfvén wave trains that do not completely fill the flux tube confining them, we find a fast wave dominated by a low frequency component with a wavelength defined by the bouncing time of the Alfvén waves. In contrast, when the wave train is long enough to completely fill the flux tube, and the Alfvén waves overlap significantly, the energy is quickly converted into a fast wave with a higher frequency that corresponds to twice the Alfvén wave frequency. We investigate how the energy, duration, and wavelength of the initial Alfvén wave train affect the conversion efficiency to fast waves. For modestly energetic star quakes, we see that the fast waves that are produced will become nonlinear well within the magnetosphere, and we comment on the X-ray emission that one may expect from such events.more » « less
-
Electromagnetic ion cyclotron (EMIC) waves can scatter radiation belt electrons with energies of a few hundred keV and higher. To accurately predict this scattering and the resulting precipitation of these relativistic electrons on short time scales, we need detailed knowledge of the wave field’s spatio-temporal evolution, which cannot be obtained from single spacecraft measurements. Our study presents EMIC wave models obtained from two-dimensional (2D) finite-difference time-domain (FDTD) simulations in the Earth’s dipole magnetic field. We study cases of hydrogen band and helium band wave propagation, rising-tone emissions, packets with amplitude modulations, and ducted waves. We analyze the wave propagation properties in the time domain, enabling comparison within situobservations. We show that cold plasma density gradients can keep the wave vector quasiparallel, guide the wave energy efficiently, and have a profound effect on mode conversion and reflections. The wave normal angle of unducted waves increases rapidly with latitude, resulting in reflection on the ion hybrid frequency, which prohibits propagation to low altitudes. The modeled wave fields can serve as an input for test-particle analysis of scattering and precipitation of relativistic electrons and energetic ions.more » « less
-
Abstract The present study provides an evidence for the generation of harmonics of magnetosonic waves in the Martian magnetosheath region. The wave signatures are manifested in the magnetic field measurements recorded by the fluxgate magnetometer instrument onboard the Mars Atmosphere and Volatile Evolution missioN (MAVEN) spacecraft in the dawn sector around 5–10 LT at an altitude of 4,000–6,000 kms. The wave that is observed continuously from 19.1 to 20.7 UT below the proton cyclotron frequency (fci ≈ 46 mHz) is identified as fundamental mode of the magnetosonic wave. Whereas harmonics of the magnetosonic wave are observed during 19.7–20.3 UT at frequencies that are multiple offci. The ambient solar wind proton density and plasma flow velocity are found to vary with a fundamental mode frequency of 46 mHz. It is noticed that the fundamental mode is mainly associated with the left‐hand (LH), and higher frequency harmonics are associated with the right‐hand (RH) circular polarizations. A clear difference in the polarization and ellipticity is noticed during the time of occurrence of harmonics. The magnetosonic wave harmonics are found to propagate in the quasi‐perpendicular directions to the ambient magnetic field. The results of linear theory and Particle‐In‐Cell simulation performed here are in agreement with the observations. The present study provides a conclusive evidence for the occurrence of harmonics of magnetosonic wave in the close vicinity of the magnetosheath region of the unmagnetized planet Mars.more » « less
An official website of the United States government

