Abstract Alluvial rivers aggrade, incise, and adjust their sediment‐transport rates in response to changing sediment and water supply. Fluvial landforms, such as river terraces, and downstream stratigraphic archives may therefore record information about past environmental change. Using a physically based model describing sediment transport and long‐profile evolution of alluvial rivers, we explore how their responses to environmental change depend on distance downstream, forcing timescales, and whether sediment or water supply is varied. We show that amplitudes of aggradation and incision, and therefore the likelihood of terrace formation, are greater upstream and in shorter and/or wetter catchments. Aggradation and incision, and therefore terrace ages, may also lag behind environmental change. How sediment‐transport rates evolve depends strongly on whether water or sediment supply is varied. Diverse responses to environmental change could arise in natural alluvial valleys, controlled by their geometry and hydrology, with important implications for paleo‐environmental interpretations of fluvial archives.
more »
« less
Shifted sediment-transport regimes by climate change and amplified hydrological variability in cryosphere-fed rivers
Climate change affects cryosphere-fed rivers and alters seasonal sediment dynamics, affecting cyclical fluvial material supply and year-round water-food-energy provisions to downstream communities. Here, we demonstrate seasonal sediment-transport regime shifts from the 1960s to 2000s in four cryosphere-fed rivers characterized by glacial, nival, pluvial, and mixed regimes, respectively. Spring sees a shift toward pluvial-dominated sediment transport due to less snowmelt and more erosive rainfall. Summer is characterized by intensified glacier meltwater pulses and pluvial events that exceptionally increase sediment fluxes. Our study highlights that the increases in hydroclimatic extremes and cryosphere degradation lead to amplified variability in fluvial fluxes and higher summer sediment peaks, which can threaten downstream river infrastructure safety and ecosystems and worsen glacial/pluvial floods. We further offer a monthly-scale sediment-availability-transport model that can reproduce such regime shifts and thus help facilitate sustainable reservoir operation and river management in wider cryospheric regions under future climate and hydrological change.
more »
« less
- PAR ID:
- 10508910
- Publisher / Repository:
- Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 9
- Issue:
- 45
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The Heihe River basin in northwest China depends heavilyon both anthropogenic and natural storage (e.g., surface reservoirs, rivers andgroundwater) to support economic and environmental functions. The QilianMountain cryosphere in the upper basin is integral to recharging thesestorage supplies. It is well established that climate warming is drivingmajor shifts in high-elevation water storage through loss of glaciers andpermafrost. However, the impacts on groundwater–surface-water interactionsand water supply in corresponding lower reaches are less clear. We built anintegrated hydrologic model of the middle basin, where most water usageoccurs, in order to explore the hydrologic response to the changingcryosphere. We simulate the watershed response to loss of glaciers (glacier scenario),advanced permafrost degradation (permafrost scenario), both of these changes simultaneously (combined scenario) andprojected temperature increases in the middle basin (warming scenario) by alteringstreamflow inputs to the model to represent cryosphere-melting processes, aswell as by increasing the temperature of the climate forcing data. Netlosses to groundwater storage in the glacier scenario and net gains in the permafrost and combined scenarios showthe potential of groundwater exchanges to mediate streamflow shifts. Theresult of the combined scenario also shows that permafrost degradation has more of animpact on the system than glacial loss. Seasonal differences ingroundwater–surface-water partitioning are also evident. The glacier scenario hasthe highest fraction of groundwater in terms of streamflow in early spring. Thepermafrost and combined scenarios meanwhile have the highest fraction of streamflowinfiltration in late spring and summer. The warming scenario raises the temperatureof the combined scenario by 2 ∘C. This results in net groundwater storageloss, a reversal from the combined scenario. Large seasonal changes inevapotranspiration and stream network connectivity relative to the combined scenario show thepotential for warming to overpower changes resulting from streamflow. Ourresults demonstrate the importance of understanding the entire system ofgroundwater–surface-water exchanges to assess water resources underchanging climatic conditions. Ultimately, this analysis can be used toexamine the cascading impact of climate change in the cryosphere on theresilience of water resources in arid basins downstream of mountain rangesglobally.more » « less
-
We adapted the coupled ocean-sediment transport model to the northern Gulf of Mexico to examine sediment dynamics on seasonal-to-decadal time scales as well as its response to decreased fluvial inputs from the Mississippi-Atchafalaya River. Sediment transport on the shelf exhibited contrasting conditions in a year, with strong westward transport in spring, fall, and winter, and relatively weak eastward transport in summer. Sedimentation rate varied from almost zero on the open shelf to more than 10 cm/year near river mouths. A phase shift in river discharge was detected in 1999 and was associated with the El Niño-Southern Oscillation (ENSO) event, after which, water and sediment fluxes decreased by ~20% and ~40%, respectively. Two sensitivity tests were carried out to examine the response of sediment dynamics to high and low river discharge, respectively. With a decreased fluvial supply, sediment flux and sedimentation rate were largely reduced in areas proximal to the deltas, which might accelerate the land loss in down-coast bays and estuaries. The results of two sensitivity tests indicated the decreased river discharge would largely affect sediment balance in waters around the delta. The impact from decreased fluvial input was minimum on the sandy shoals ~100 km west of the Mississippi Delta, where deposition of fluvial sediments was highly affected by winds.more » « less
-
Abstract The seasonal behavior of fluvial dissolved silica (DSi) concentrations, termedDSi regime, mediates the timing of DSi delivery to downstream waters and thus governs river biogeochemical function and aquatic community condition. Previous work identified five distinct DSi regimes across rivers spanning the Northern Hemisphere, with many rivers exhibiting multiple DSi regimes over time. Several potential drivers of DSi regime behavior have been identified at small scales, including climate, land cover, and lithology, and yet the large‐scale spatiotemporal controls on DSi regimes have not been identified. We evaluate the role of environmental variables on the behavior of DSi regimes in nearly 200 rivers across the Northern Hemisphere using random forest models. Our models aim to elucidate the controls that give rise to (a) average DSi regime behavior, (b) interannual variability in DSi regime behavior (i.e., Annual DSi regime), and (c) controls on DSi regime shape (i.e., minimum and maximum DSi concentrations). Average DSi regime behavior across the period of record was classified accurately 59% of the time, whereas Annual DSi regime behavior was classified accurately 80% of the time. Climate and primary productivity variables were important in predicting Average DSi regime behavior, whereas climate and hydrologic variables were important in predicting Annual DSi regime behavior. Median nitrogen and phosphorus concentrations were important drivers of minimum and maximum DSi concentrations, indicating that these macronutrients may be important for seasonal DSi drawdown and rebound. Our findings demonstrate that fluctuations in climate, hydrology, and nutrient availability of rivers shape the temporal availability of fluvial DSi.more » « less
-
The water discharge and sediment load have been increasingly altered by climate change and human activities in recent decades. For the Pearl River, however, long-term variations in the sediment regime, especially in the last decade, remain poorly known. Here we updated knowledge of the temporal trends in the sediment regime of the Pearl River at annual, seasonal and monthly time scales from the 1950s to 2020. Results show that the annual sediment load and suspended sediment concentration (SSC) exhibited drastically decreased, regardless of water discharge. Compared with previous studies, we also found that sediment load and SSC reached a conspicuous peak in the 1980s, and showed a significant decline starting in the 2000s and 1990s, respectively. In the last decade, however, water discharge and sediment load showed slightly increasing trends. At the seasonal scale, the wet-season water discharge displays a decreasing trend, while the dry-season water discharge is increasing. At the monthly scale, the flood seasons in the North and East Rivers typically occur one month earlier than that in the West River due to the different precipitation regimes. Precipitation was responsible for the long-term change of discharge, while human activities (e.g. dam construction and land use change) exerted different effects on the variations in sediment load among different periods. Changes in the sediment regime have exerted substantial influences on downstream channel morphology and saltwater intrusion in the Greater Bay Area. Our study proposes a watershed-based solution, and provides scientific guidelines for the sustainable development of the Greater Bay Area.more » « less
An official website of the United States government

